scholarly journals Using Machine Learning to Improve Survival Prediction After Heart Transplantation

Author(s):  
Brian Ayers ◽  
Tuomas Sandholm ◽  
Igor Gosev ◽  
Sunil Prasad ◽  
Arman Kilic

Background: This study investigates the use of modern machine learning (ML) techniques to improve prediction of survival after orthotopic heart transplantation (OHT). Methods: Retrospective study of adult patients undergoing primary, isolated OHT between 2000-2019 as identified in the United Network for Organ Sharing (UNOS) registry. The primary outcome was one-year post-transplant survival. Patients were randomly divided into training (80%) and validation (20%) sets. Dimensionality reduction and data re-sampling were employed during training. Multiple machine learning algorithms were combined into a final ensemble ML model. Discriminatory capability was assessed using area under receiver-operating-characteristic curve (AUROC), net reclassification index (NRI), and decision curve analysis (DCA). Results: A total of 33,657 OHT patients were evaluated. One-year mortality was 11% (n=3,738). In the validation cohort, the AUROC of singular logistic regression was 0.649 (95% CI 0.628-0.670) compared to 0.691 (95% CI 0.671-0.711) with random forest, 0.691 (95% CI 0.671-0.712) with deep neural network, and 0.653 (95% CI 0.632-0.674) with Adaboost. A final ensemble ML model was created that demonstrated the greatest improvement in AUROC: 0.764 (95% CI 0.745-0.782) (p<0.001). The ensemble ML model improved predictive performance by 72.9% ±3.8% (p<0.001) as assessed by NRI compared to logistic regression. DCA showed the final ensemble method improved risk prediction across the entire spectrum of predicted risk as compared to all other models (p<0.001). Conclusions: Modern ML techniques can improve risk prediction in OHT compared to traditional approaches. This may have important implications in patient selection, programmatic evaluation, allocation policy, and patient counseling and prognostication.

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Brian Ayers ◽  
Toumas Sandhold ◽  
Igor Gosev ◽  
Sunil Prasad ◽  
Arman Kilic

Introduction: Prior risk models for predicting survival after orthotopic heart transplantation (OHT) have displayed only modest discriminatory capability. With increasing interest in the application of machine learning (ML) to predictive analytics in clinical medicine, this study aimed to evaluate whether modern ML techniques could improve risk prediction in OHT. Methods: Data from the United Network for Organ Sharing registry was collected for all adult patients that underwent OHT from 2000 through 2019. The primary outcome was one-year post-transplant mortality. Dimensionality reduction and data re-sampling were employed during training. The final ensemble model was created from 100 different models of each algorithm: deep neural network, logistic regression, adaboost, and random forest. Discriminatory capability was assessed using area under receiver-operating-characteristic curve (AUROC), net reclassification index (NRI), and decision curve analysis (DCA). Results: Of the 33,657 study patients, 26,926 (80%) were randomly selected for the training set and 6,731 (20%) as a separate testing set. One-year mortality was balanced between cohorts (11.0% vs 11.3%). The optimal model performance was a final ensemble ML model. This model demonstrated an improved AUROC of 0.764 (95% CI, 0.745-0.782) in the testing set as compared to the other models (Figure). Additionally, the final model demonstrated an improvement of 72.9% ±3.8% (p<0.001) in predictive performance as assessed by NRI compared to logistic regression. The DCA showed the final ensemble method improved risk prediction across the entire spectrum of predicted risk as compared to all other models (p<0.001). Conclusions: An ensemble ML model was able to achieve greater predictive performance as compared to individual ML models as well as logistic regression for predicting survival after OHT. This analysis demonstrates the promise of ML techniques in risk prediction in OHT.


2020 ◽  
Author(s):  
Uzair Bhatti

BACKGROUND In the era of health informatics, exponential growth of information generated by health information systems and healthcare organizations demands expert and intelligent recommendation systems. It has become one of the most valuable tools as it reduces problems such as information overload while selecting and suggesting doctors, hospitals, medicine, diagnosis etc according to patients’ interests. OBJECTIVE Recommendation uses Hybrid Filtering as one of the most popular approaches, but the major limitations of this approach are selectivity and data integrity issues.Mostly existing recommendation systems & risk prediction algorithms focus on a single domain, on the other end cross-domain hybrid filtering is able to alleviate the degree of selectivity and data integrity problems to a better extent. METHODS We propose a novel algorithm for recommendation & predictive model using KNN algorithm with machine learning algorithms and artificial intelligence (AI). We find the factors that directly impact on diseases and propose an approach for predicting the correct diagnosis of different diseases. We have constructed a series of models with good reliability for predicting different surgery complications and identified several novel clinical associations. We proposed a novel algorithm pr-KNN to use KNN for prediction and recommendation of diseases RESULTS Beside that we compared the performance of our algorithm with other machine algorithms and found better performance of our algorithm, with predictive accuracy improving by +3.61%. CONCLUSIONS The potential to directly integrate these predictive tools into EHRs may enable personalized medicine and decision-making at the point of care for patient counseling and as a teaching tool. CLINICALTRIAL dataset for the trials of patient attached


2019 ◽  
Author(s):  
Cheng-Sheng Yu ◽  
Yu-Jiun Lin ◽  
Chang-Hsien Lin ◽  
Sen-Te Wang ◽  
Shiyng-Yu Lin ◽  
...  

BACKGROUND Metabolic syndrome is a cluster of disorders that significantly influence the development and deterioration of numerous diseases. FibroScan is an ultrasound device that was recently shown to predict metabolic syndrome with moderate accuracy. However, previous research regarding prediction of metabolic syndrome in subjects examined with FibroScan has been mainly based on conventional statistical models. Alternatively, machine learning, whereby a computer algorithm learns from prior experience, has better predictive performance over conventional statistical modeling. OBJECTIVE We aimed to evaluate the accuracy of different decision tree machine learning algorithms to predict the state of metabolic syndrome in self-paid health examination subjects who were examined with FibroScan. METHODS Multivariate logistic regression was conducted for every known risk factor of metabolic syndrome. Principal components analysis was used to visualize the distribution of metabolic syndrome patients. We further applied various statistical machine learning techniques to visualize and investigate the pattern and relationship between metabolic syndrome and several risk variables. RESULTS Obesity, serum glutamic-oxalocetic transaminase, serum glutamic pyruvic transaminase, controlled attenuation parameter score, and glycated hemoglobin emerged as significant risk factors in multivariate logistic regression. The area under the receiver operating characteristic curve values for classification and regression trees and for the random forest were 0.831 and 0.904, respectively. CONCLUSIONS Machine learning technology facilitates the identification of metabolic syndrome in self-paid health examination subjects with high accuracy.


2021 ◽  
Vol 9 ◽  
Author(s):  
Huanhuan Zhao ◽  
Xiaoyu Zhang ◽  
Yang Xu ◽  
Lisheng Gao ◽  
Zuchang Ma ◽  
...  

Hypertension is a widespread chronic disease. Risk prediction of hypertension is an intervention that contributes to the early prevention and management of hypertension. The implementation of such intervention requires an effective and easy-to-implement hypertension risk prediction model. This study evaluated and compared the performance of four machine learning algorithms on predicting the risk of hypertension based on easy-to-collect risk factors. A dataset of 29,700 samples collected through a physical examination was used for model training and testing. Firstly, we identified easy-to-collect risk factors of hypertension, through univariate logistic regression analysis. Then, based on the selected features, 10-fold cross-validation was utilized to optimize four models, random forest (RF), CatBoost, MLP neural network and logistic regression (LR), to find the best hyper-parameters on the training set. Finally, the performance of models was evaluated by AUC, accuracy, sensitivity and specificity on the test set. The experimental results showed that the RF model outperformed the other three models, and achieved an AUC of 0.92, an accuracy of 0.82, a sensitivity of 0.83 and a specificity of 0.81. In addition, Body Mass Index (BMI), age, family history and waist circumference (WC) are the four primary risk factors of hypertension. These findings reveal that it is feasible to use machine learning algorithms, especially RF, to predict hypertension risk without clinical or genetic data. The technique can provide a non-invasive and economical way for the prevention and management of hypertension in a large population.


10.2196/17110 ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. e17110 ◽  
Author(s):  
Cheng-Sheng Yu ◽  
Yu-Jiun Lin ◽  
Chang-Hsien Lin ◽  
Sen-Te Wang ◽  
Shiyng-Yu Lin ◽  
...  

Background Metabolic syndrome is a cluster of disorders that significantly influence the development and deterioration of numerous diseases. FibroScan is an ultrasound device that was recently shown to predict metabolic syndrome with moderate accuracy. However, previous research regarding prediction of metabolic syndrome in subjects examined with FibroScan has been mainly based on conventional statistical models. Alternatively, machine learning, whereby a computer algorithm learns from prior experience, has better predictive performance over conventional statistical modeling. Objective We aimed to evaluate the accuracy of different decision tree machine learning algorithms to predict the state of metabolic syndrome in self-paid health examination subjects who were examined with FibroScan. Methods Multivariate logistic regression was conducted for every known risk factor of metabolic syndrome. Principal components analysis was used to visualize the distribution of metabolic syndrome patients. We further applied various statistical machine learning techniques to visualize and investigate the pattern and relationship between metabolic syndrome and several risk variables. Results Obesity, serum glutamic-oxalocetic transaminase, serum glutamic pyruvic transaminase, controlled attenuation parameter score, and glycated hemoglobin emerged as significant risk factors in multivariate logistic regression. The area under the receiver operating characteristic curve values for classification and regression trees and for the random forest were 0.831 and 0.904, respectively. Conclusions Machine learning technology facilitates the identification of metabolic syndrome in self-paid health examination subjects with high accuracy.


Medicina ◽  
2021 ◽  
Vol 57 (2) ◽  
pp. 99
Author(s):  
Yueying Wang ◽  
Shuai Liu ◽  
Zhao Wang ◽  
Yusi Fan ◽  
Jingxuan Huang ◽  
...  

Background and Objective: Primary lung cancer is a lethal and rapidly-developing cancer type and is one of the most leading causes of cancer deaths. Materials and Methods: Statistical methods such as Cox regression are usually used to detect the prognosis factors of a disease. This study investigated survival prediction using machine learning algorithms. The clinical data of 28,458 patients with primary lung cancers were collected from the Surveillance, Epidemiology, and End Results (SEER) database. Results: This study indicated that the survival rate of women with primary lung cancer was often higher than that of men (p < 0.001). Seven popular machine learning algorithms were utilized to evaluate one-year, three-year, and five-year survival prediction The two classifiers extreme gradient boosting (XGB) and logistic regression (LR) achieved the best prediction accuracies. The importance variable of the trained XGB models suggested that surgical removal (feature “Surgery”) made the largest contribution to the one-year survival prediction models, while the metastatic status (feature “N” stage) of the regional lymph nodes was the most important contributor to three-year and five-year survival prediction. The female patients’ three-year prognosis model achieved a prediction accuracy of 0.8297 on the independent future samples, while the male model only achieved the accuracy 0.7329. Conclusions: This data suggested that male patients may have more complicated factors in lung cancer than females, and it is necessary to develop gender-specific diagnosis and prognosis models.


Author(s):  
Mustafa Berkant Selek ◽  
Saadet Sena Egeli ◽  
Yalcin Isler

In this study, the intensive care unit patient survival is predicted by machine learning algorithms according to the examinations performed in the first 24 hours. The data of intensive care patients collected from approximately two hundred hospitals over a period of one year were used. Algorithms are run in Python environment. Machine learning models were compared with the Cross-Validation method, and the random forest algorithm is used. The model made the prediction with 92,53% accuracy rate.


Author(s):  
scott Pappada

Machine learning and artificial intelligence (AI) in medicine has arrived in medicine and the healthcare community is experiencing significant growth in its adoption across numerous patient care settings. There are countless applications for machine learning and AI in medicine ranging from patient outcome prediction, to clinical decision support, to predicting future patient therapeutic setpoints. This commentary discusses a recent application leveraging machine learning to predict one year patient survival following orthotopic heart transplantation. This modeling approach has significant implications in terms of improving clinical decision making, patient counseling, and ultimately organ allocation and has been shown to significantly outperform preexisting algorithms. This commentary also discusses how adoption and advancement of this modeling approach in the future can provide increased personalization of patient care. The continued expansion of information systems and growth of electronic patient data sources in healthcare will continue to pave the way for increased use and adoption of data science in medicine. Personalized medicine has been a long-standing goal of the healthcare community and with machine learning and AI now being continually incorporated into clinical settings and practice, this technology is well on the pathway to make a considerable impact to greatly improve patient care in the near future.


2021 ◽  
Vol 77 (18) ◽  
pp. 757
Author(s):  
Polydoros Kampaktsis ◽  
Serafeim Moustakidis ◽  
Aspasia Tzani ◽  
Ilias P Doulamis ◽  
Andreas Tzoumas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document