scholarly journals Effects of climate change on the distribution of wild Akebia trifoliata

Author(s):  
Jun-Ming Zhang ◽  
Xiang-Yong Peng ◽  
Min-Li Song ◽  
Zhen-Jian Li ◽  
Xin-Qiao Xu ◽  
...  

Understanding the impacts and constraints of climate change on the potential geographic distribution of wild Akebia trifoliata is crucial for its sustainable management and economic development as a medicinal material or fruit. In this study, according to the first-hand information obtained on-the-spot investigation, the geographic distribution and response to climate factors of Akebia trifoliata were studied by the MaxEnt model and ArcGIS. The genetic diversity and population structure of 21 natural populations of Akebia trifoliata were studied by SSR markers. The results showed that precipitation and temperature were the two most important climatic factors that restrict the geographic distribution of Akebia trifoliata. Under the current climate scenario, the suitable growth regions of Akebia trifoliata in China were 91.7-121.9 °E and 21.6-37.5 °N. Combined with the evolutionary relationship and prediction results, 21 populations of Akebia trifoliata tended to migrate to the north. In the scenarios (SSP2-4.5, SSP3-7.0, and SSP5-8.5) of higher greenhouse gas emission concentration, the distribution area of Akebia trifoliata continued to expand, while in the low concentration greenhouse gas emission scenario (SSP1-2.6), the distribution area of Akebia trifoliata remained stable. The distribution center of Akebia trifoliata in China will shift to high latitude regions with the increase of temperature in the future. The results evaluated the impact of climate factors on the spatial distribution of wild Akebia trifoliata, displayed the possible changes of geographical distribution of Akebia trifoliata under different climate scenarios, and provided scientific evidence for durative protection and supervise of Akebia trifoliata.

2021 ◽  
Vol 9 ◽  
Author(s):  
Jun-Ming Zhang ◽  
Min-Li Song ◽  
Zhen-Jian Li ◽  
Xiang-Yong Peng ◽  
Shang Su ◽  
...  

Akebia quinata, also known as chocolate vine, is a creeping woody vine which is used as Chinese herbal medicine, and found widely distributed in East Asia. At present, its wild resources are being constantly destroyed. This study aims to provide a theoretical basis for the resource protection of this plant species by analyzing the possible changes in its geographic distribution pattern and its response to climate factors. It is the first time maximum entropy modeling (MaxEnt) and ArcGIS software have been used to predict the distribution of A. quinata in the past, the present, and the future (four greenhouse gas emission scenarios, namely, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). Through the prediction results, the impact of climate change on the distribution of A. quinata and the response of A. quinata to climate factors were analyzed. The results showed that the most significant climatic factor affecting the distribution pattern of A. quinata was the annual precipitation. At present, the suitable distribution regions of A. quinata are mainly in the temperate zone, and a few suitable distribution regions are in the tropical zone. The medium and high suitable regions are mainly located in East Asia, accounting for 51.1 and 81.7% of the worldwide medium and high suitable regions, respectively. The migration of the geometric center of the distribution regions of A. quinata in East Asia is mainly affected by the change of distribution regions in China, and the average migration rate of the geometric center in each climate scenario is positively correlated with the level of greenhouse gas emission scenario.


2013 ◽  
Vol 04 (03) ◽  
pp. 1350008 ◽  
Author(s):  
NIKOLINKA SHAKHRAMANYAN ◽  
UWE A. SCHNEIDER ◽  
BRUCE A. McCARL

Climate change may affect the use of pesticides and their associated environmental and human health impacts. This study employs and modifies a partial equilibrium model of the US agricultural sector to examine the effects of alternative regulations of the pesticide and greenhouse gas emission externality. Simulation results indicate that without pesticide externality regulations and low greenhouse gas emission mitigation strategy, climate change benefits from increased agricultural production in the US are more than offset by increased environmental costs. Although the combined regulation of pesticide and greenhouse gas emission externalities increases farmers' production costs, their net income effects are positive because of price adjustments and associated welfare shifts from consumers to producers. The results also show heterogeneous impacts on preferred pest management intensities across major crops. While pesticide externality regulations lead to substantial increases in total water use, climate policies induce the opposite effect.


Agro Ekonomi ◽  
2017 ◽  
Vol 28 (1) ◽  
pp. 95
Author(s):  
Ali Hasyim Al rosyid ◽  
Irham Irham ◽  
Jangkung Handoyo Mulyo

One obstacle in the improvement of community welfare in the agricultural sector, especially in Java, is the environmental externality which constantly exists in every economic activity. The objective of this research was to estimate greenhouse gas emission coming from agricultural sector in Java and identify whether farmers in Java had allocated environmental conservation costs as the impact of greenhouse gas emission from agricultural activities in Java. The inventory method of greenhouse gas emission from agricultural sector is based on inventory guidelines published by IPCC (Intergovernmental Panel on Climate Change) in 2006. As for the analysis to determine the relationship between greenhouse gas emission and GRDP of agricultural subsector per agricultural labor, The Environmental Kuznets Curve (EKC) was employed, alongside greenhouse gas emission indicators representing environmental degradation and GRDP of agricultural subsector per agricultural worker representing of per capita income of agricultural. Overall, greenhouse gas emissions, both CH4 methane emissions and carbon dioxide emission (CO2) - produced from rice cultivation, fertilizer application, livestock enteric fermentation and poultry manure - are gradually increasing. And the relationship between greenhouse gas emission and GRDP per worker has inverted-U shape; and it is in line with EKC hypothesis. Thereby, the role of the entire community elements and government support in implementing mitigation technology and agricultural adaptation is needed to cope with impacts of greenhouse gas emission, such as climate change.


Author(s):  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi

<p>The impact of climate change on climatic actions could significantly affect, in the mid-term future, the design of new structures as well as the reliability of existing ones designed in accordance to the provisions of present and past codes. Indeed, current climatic loads are defined under the assumption of stationary climate conditions but climate is not stationary and the current accelerated rate of changes imposes to consider its effects.</p><p>Increase of greenhouse gas emissions generally induces a global increase of the average temperature, but at local scale, the consequences of this phenomenon could be much more complex and even apparently not coherent with the global trend of main climatic parameters, like for example, temperature, rainfalls, snowfalls and wind velocity.</p><p>In the paper, a general methodology is presented, aiming to evaluate the impact of climate change on structural design, as the result of variations of characteristic values of the most relevant climatic actions over time. The proposed procedure is based on the analysis of an ensemble of climate projections provided according a medium and a high greenhouse gas emission scenario. Factor of change for extreme value distribution’s parameters and return values are thus estimated in subsequent time windows providing guidance for adaptation of the current definition of structural loads.</p><p>The methodology is illustrated together with the outcomes obtained for snow, wind and thermal actions in Italy. Finally, starting from the estimated changes in extreme value parameters, the influence on the long-term structural reliability can be investigated comparing the resulting time dependent reliability with the reference reliability levels adopted in modern Structural codes.</p>


2021 ◽  
Vol 5 (4) ◽  
pp. 26-35
Author(s):  
Ayanda Pamella Deliwe ◽  
Shelley Beryl Beck ◽  
Elroy Eugene Smith

Objective – This paper sets out to assess perceptions of food retailers regarding climate change, greenhouse gas emission and sustainability in the Nelson Mandela Bay region of South Africa. The primary objective of this study is to investigate the food retailers’ greenhouse gas emissions strategies. Climate change catastrophic potential and the harmful effect that it has had on the community and businesses has led to it being given attention from social media and in literature. Methodology/Technique – This paper covered a literature review that provided the theoretical framework. The empirical study that was carried out included self-administered questionnaires which were distributed to 120 food retailers who were selected from the population using convenience sampling. Findings - The results revealed that most of the respondents were neutral towards the impact of operational factors regarding GHG emission in the food retail sector. Novelty - There is limited research that has been conducted among food retailers from the designated population. The study provided guidelines that will be of assistance to food retailers when dealing with climate change and greenhouse gas emissions impact in the food retail sector. Type of Paper: Empirical. JEL Classification: L66, Q54, Q59. Keywords: Climate Change; Food Retailers; Greenhouse Gas Emissions; Perceptions; Strategies; Sustainability Reference to this paper should be made as follows: Deliwe, A.P; Beck, S.B; Smith, E.E. (2021). Perceptions of Food Retailers Regarding Climate Change and Greenhouse Gas Emissions, Journal of Business and Economics Review, 5(4) 26–35. https://doi.org/10.35609/jber.2021.5.4(3)


2018 ◽  
Vol 10 (2) ◽  
pp. 134 ◽  
Author(s):  
Cesar Revoredo-Giha ◽  
Neil Chalmers ◽  
Faical Akaichi

2017 ◽  
Author(s):  
Pablo Martinez ◽  
Mayane A Andrade ◽  
Claudio Juan Bidau

BACKGROUND: The knowledge of the factors that affect the geographic distribution of species permits us to infer where they can be found. Human beings, through the expansion of their own distribution area and their contribution to climate alteration have modified the geographic distribution of other biological species. As a consequence, the temporal pattern of co-occurrence of human beings and venomous species (scorpions, spiders, snakes) is being modified. Thus, the temporal pattern of areas with risk of accidents with such species tends to become dynamic along time. The aim of this work was to analyze the areas of occurrence of species of Tityus in Argentina and assess the impact of global climate change on their area of distribution constructing risk maps. METHODS: Using data of occurrence of the species and climatic variables, we constructed models of species distribution (SMDs) under current and future conditions. We also created maps that allow the detection of temporal shifts in the distribution patterns of each Tityus species. Finally, we constructed risk maps for the analyzed species. RESULTS: Our results predict that climate change will have an impact on the distribution of Tityus species which will clearly expand to more southern latitudes, with the exception of T. argentinus. T. bahiensis, widely distributed in Brazil, showed a considerable increase of its potential area (ca. 37%) with future climate change. The species T. confluens and T. trivittatus that cause the highest number of accidents in Argentina, showed significant changes of their distributions in future scenarios. The former fact is worrying because Buenos Aires province is the more densely populated federal district in Argentina thus liable to become the one most affected by T. trivittatus. DISCUSSION: Then, these alterations of distributional patterns can lead to amplify the accident risk zones of venomous species, becoming an important subject of concern for public health policies.


Sign in / Sign up

Export Citation Format

Share Document