scholarly journals Perceptions of Food Retailers Regarding Climate Change and Greenhouse Gas Emissions

2021 ◽  
Vol 5 (4) ◽  
pp. 26-35
Author(s):  
Ayanda Pamella Deliwe ◽  
Shelley Beryl Beck ◽  
Elroy Eugene Smith

Objective – This paper sets out to assess perceptions of food retailers regarding climate change, greenhouse gas emission and sustainability in the Nelson Mandela Bay region of South Africa. The primary objective of this study is to investigate the food retailers’ greenhouse gas emissions strategies. Climate change catastrophic potential and the harmful effect that it has had on the community and businesses has led to it being given attention from social media and in literature. Methodology/Technique – This paper covered a literature review that provided the theoretical framework. The empirical study that was carried out included self-administered questionnaires which were distributed to 120 food retailers who were selected from the population using convenience sampling. Findings - The results revealed that most of the respondents were neutral towards the impact of operational factors regarding GHG emission in the food retail sector. Novelty - There is limited research that has been conducted among food retailers from the designated population. The study provided guidelines that will be of assistance to food retailers when dealing with climate change and greenhouse gas emissions impact in the food retail sector. Type of Paper: Empirical. JEL Classification: L66, Q54, Q59. Keywords: Climate Change; Food Retailers; Greenhouse Gas Emissions; Perceptions; Strategies; Sustainability Reference to this paper should be made as follows: Deliwe, A.P; Beck, S.B; Smith, E.E. (2021). Perceptions of Food Retailers Regarding Climate Change and Greenhouse Gas Emissions, Journal of Business and Economics Review, 5(4) 26–35. https://doi.org/10.35609/jber.2021.5.4(3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jason Kaufman ◽  
Ana M. Vicedo-Cabrera ◽  
Vicky Tam ◽  
Lihai Song ◽  
Ethan Coffel ◽  
...  

AbstractThe risk of kidney stone presentations increases after hot days, likely due to greater insensible water losses resulting in more concentrated urine and altered urinary flow. It is thus expected that higher temperatures from climate change will increase the global prevalence of kidney stones if no adaptation measures are put in place. This study aims to quantify the impact of heat on kidney stone presentations through 2089, using South Carolina as a model state. We used a time series analysis of historical kidney stone presentations (1997–2014) and distributed lag non-linear models to estimate the temperature dependence of kidney stone presentations, and then quantified the projected impact of climate change on future heat-related kidney stone presentations using daily projections of wet-bulb temperatures to 2089, assuming no adaptation or demographic changes. Two climate change models were considered—one assuming aggressive reduction in greenhouse gas emissions (RCP 4.5) and one representing uninibited greenhouse gas emissions (RCP 8.5). The estimated total statewide kidney stone presentations attributable to heat are projected to increase by 2.2% in RCP 4.5 and 3.9% in RCP 8.5 by 2085–89 (vs. 2010–2014), with an associated total excess cost of ~ $57 million and ~ $99 million, respectively.


2009 ◽  
Vol 1 (3) ◽  
pp. 132-149 ◽  
Author(s):  
Jennifer Kent

Whereas global compacts, such as the Kyoto Protocol, have yet to consolidate action from governments on climate change, there has been increasing emphasis and acknowledgement of the role of individuals (as citizens and consumers) as contributors to climate change and as responsible agents in mitigating greenhouse gas emissions. Recently, along with the acknowledgement of the threat that anthropogenic climate change presents to the planet, governments and non-government organizations have focused on personal responsibility campaigns targeting individuals and households with a view to stemming the growth of greenhouse gas emissions. The Australian Government, for example, spent $25 million in 2007 on the climate change information campaign targeted to every Australian household, ‘Be Climate Clever: “I can do that”. Such measures centre on “personal, private-sphere ….. behaviour” (Stern 2005: 10786) that focuses on the “choice of goods, services and lifestyles” (WWF-UK 2008: 10) and imply that global greenhouse gas emission reduction targets can be met through the actions of individuals. There is growing concern in some quarters about climate change programs that emphasize individual behaviour change strategies that use “simple and painless steps” (WWF-UK 2008) and “small steps add up” (Accountability and Consumers International 2007) approaches. The emergent fear is that given the urgency of the climate change problem that such approaches will mean important opportunities for citizen-led action will be lost. This paper will explore how notions of individual responsibility have arisen and what the trend towards individualized responsibility may mean for active citizenship on climate change.


Author(s):  
Adewale M. Ogunmodede

Although Africa’s contribution to the world’s greenhouse gas emission is the smallest compared to other continents, yet they tend to be affected most by the variability in Climate. Malawi is not an exception to this climate change, as they are not just faced with rising temperatures and variable rainfall patterns, but with reoccurring droughts and severe flooding. Agriculture has been noted to contribute significantly to not only climate change but also has significant impacts on global warming through its greenhouse gas emissions. Nevertheless, not all farming systems impact negatively on climate change. Conservation Agriculture is a farming system that encourages no or minimum soil disturbance, maintenance of a permanent soil cover, and diversification of crop species. These three interlinked principles combined with good agricultural practices promote biodiversity and normal biotic processes, both on and under the ground surface, thereby increasing the productivity and nutrient use efficiency of water, into a more resilient farming system which will help sustain and improve agricultural production. This review looks at Conservation Agriculture practices in the Machinga Agricultural Development Division of Malawi and its role in climate change mitigation and adaptation. This paper shows that Conservation Agriculture has played an active role in the adaptation and mitigation of climate change effect by reducing atmospheric greenhouse gas emissions but suggested there is a need for the government to formulate a CA framework that is founded on the three interlinked principles and not just based on soil and water conservation principles which are currently being advocated and practised.


2021 ◽  
Author(s):  
Biruk Birhanu Ashenafi

Abstract Over the past couple of decades, we have witnessed a rise in greenhouse gas emissions and widening income inequality that threaten human well-being. Addressing these challenges and ensuring sustainable economic growth becomes a pressing issue for the development policy agendas across Africa. This paper offers an answer for the impact of greenhouse gas emissions on income inequality by taking the most vulnerable region. In doing so, a panel data set from 1981–2015 across 49 countries are used and applied a panel data fixed effect regression and instrumental variable method (IV). We establish s causal relationship and show that greenhouse gas emission widens income inequality. We further cemented our baseline finding using alternative emission indicators typical to the Agrarian society. Our findings shed light on alternative development policy choices to the African continent where the traditional policy prescription does not fit the current dynamics in demography, urbanization, and agricultural practices. Hence, we emphasize the Agriculture Development Lead Industrialization (ADLI) policy that places high importance on transforming the livelihood of the people engaged in agriculture. The approach has proven to unlock the trinity challenge posed by environmental degradation, income inequality, and stagnant economic growth. Indeed, industrialization can be realized through transforming agriculture first. Adding value to agriculture reduces emission, redistributes income, and eventually maintains steady per capita income growth in Africa.


Author(s):  
Hans von Storch

AbstractGood intentions by the middle class are not always well guided and do not always lead to measurable or significant results. For example, efforts to limit greenhouse gas emissions may hold broad appeal but can still have negligible impact. Therefore, it is suggested to embark on “Apollo projects”, which bundle the potential and willingness of the middle class. These projects should focus on the development of specific technologies, with economic advantages to support their spread throughout the world. Doing so will harness the middle class in support of greenhouse gas emission reductions in the gigaton-range. Such pan-national projects, for example, could address emission-free ship- or air-propulsion, the electrification of heating or of processes in the chemical industry.


2019 ◽  
Vol 75 (3) ◽  
pp. 21-32
Author(s):  
Natalia Vasylieva

Greenhouse gas emission is a global ecological challenge since it affects climate change and complicates providing food security. Each country ought to care about mitigating Greenhouse gas emissions including CH4 and N2O originated from agriculture. In this context, first, the performed research focused on Ukrainian ranking among the world Greenhouse gas emitters offering a multi-criteria evaluation of total Greenhouse gas quantities in CO2 equivalent, those ones per capita and per km2 of countries’ land territories. These indictors were also applied to visual comparing involvement of Ukrainian economy and its agriculture in the international Greenhouse gas emissions. Second, to explore agricultural Greenhouse gas emission at the domestic level we studied regional contributions by basic source categories such as enteric fermentation, manure management, and synthetic fertilizers. The proposed horizontal and vertical analyses allow clarifying regional management priorities in reducing Greenhouse gas emissions. Third, for this purpose the conducted investigation specified the EU Member States which match Ukrainian condition by shares of Greenhouse gas emissions and outputs in animal and crop sectors. The found patterns will be the most reliable vectors of adopting effective agricultural practices beneficial for the environment protection and mitigating influence over climate change.


Author(s):  
C. Wünsch ◽  
A. Tsybina

AbstractThe goal of this study was to assess the impact of the introduction of various waste management methods on the amount of greenhouse gas emissions from these activities. The assessment was carried out on the example of the Russian waste management sector. For this purpose, three scenarios had been elaborated for the development of the Russian waste management sector: Basic scenario, Reactive scenario and Innovative scenario. For each of the scenarios, the amount of greenhouse gas emissions generated during waste management was calculated. The calculation was based on the 2006 Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories. The results of the greenhouse gas net emissions calculation are as follows: 64 Mt CO2-eq./a for the basic scenario, 12.8 Mt CO2-eq./a for the reactive scenario, and 3.7 Mt CO2-eq./a for the innovative scenario. An assessment was made of the impact of the introduction of various waste treatment technologies on the amounts of greenhouse gas emissions generated in the waste management sector. An important factor influencing the reduction in greenhouse gas emissions from landfills is the recovery and thermal utilization of 60% of the generated landfill gas. The introduction of a separate collection system that allows to separately collect 20% of the total amount of generated municipal solid waste along with twofold increase in the share of incinerated waste leads to a more than threefold reduction in total greenhouse gas emissions from the waste management sector.


2021 ◽  
Vol 894 (1) ◽  
pp. 012005
Author(s):  
I Suryati ◽  
A Farindah ◽  
I Indrawan

Abstract Landfill is a place where waste reaches the final stage. The piles of waste can generate greenhouse gas emissions that cause global warming the potential of climate change. The greenhouse gas emission generates from the piles of waste is CH4 emission. The research purpose is to count CH4 emission in the waste landfill in Medan city located in Terjun, projection CH4 emission for ten years later is 2020-2029 and decisive the effort reduction of CH4 emission. The scenarios of reducing CH4 emission in Terjun waste landfill reduce the potential CH4 emission for ten years later. The calculation of CH4 emission from the piles of waste in Terjun waste landfill using FOD method (First Orde Decay) by IPCC (Intergovernmental Panel on Climate Change) in 2006. In 2019, CH4 emission in Terjun waste landfill was 12,350.750-ton CH4 and had an uplift in 2029 can reach 17,143.087-ton CH4. There are two scenarios for reducing CH4 emission in the Terjun waste landfill; the first is the processing of waste in the source (composting), and the second is reducing the waste by using incineration technology Terjun landfill. The first scenario (composting) can reduce CH4 emission by 14.80%. The second scenario can reduce by 63.37% the CH4 emission in Terjun waste landfill. The chosen alternative scenario for reducing CH4 in the Terjun waste landfill is the first scenario, the processing of waste in the source (composting).


Author(s):  
Ayanda Pamella Deliwe ◽  
Shelley Beryl Beck ◽  
Elroy Eugene Smith

Greenhouse gas (GHG) emission and its associated effects have been a debate in literature for many years (Hoffman, 2011:5; Williams & Schaefer, 2012:175; Whitmarsh, 2011:690). According to Jackson (2016), climate change is seen as a yearly change within the earth's climate that is a result of changes in its atmosphere, as well as interactions between the atmosphere and other chemical, geologic, geographic and biological factors within the earth's system. Climate change has primarily caused a warming effect of the earth's atmosphere that has affected all aspects of life (Pachauri & Reisinger, 2007:7). While there are limited studies that measure greenhouse gas emissions arising from the entire global food chain, there have been estimates of GHG emissions attributable to global agricultural production (Garnett, 2011:23). Energy consumption is one of the biggest challenges food retailers are facing as it not only increases overhead costs but also GHG emission (Tassou, Hadawey & Marriott, 2011). Garnett (2011) alleges that the food chain produces greenhouse gas (GHG) emissions at all stages in its life cycle, from the farming process and its inputs, through to manufacture, distribution, refrigeration, retailing, food preparation in the home and waste disposal. Technological improvements, while essential, will not be sufficient in reducing GHG emissions. The combination of population growth and rising per capita anticipated consumption of meat and dairy products will undermine the cuts that technological and managerial innovation can achieve. Over the last few years food retailers in South Africa started to focus their attention towards GHG emissions, but there is still no framework for food retailers to reduce GHG emissions in South Africa (Tassou et al. 2007:2988). Various studies have argued that the food and drink, transportation, and construction industry sectors are regarded as the most significant contributors to GHG emissions (European Commission, 2006; SEI, WWF & CURE, 2006 and UNEP, 2008). Significant changes in food production and increases in food transport have resulted. The production of food on farms has become increasingly mechanised, large-scale, and specialised; and food supply chains have become more complicated and transport-intensive (Roelich, 2008). Food retailers are contributing to GHG emissions by means of electricity usage through refrigerator equipment, lighting, heating, air conditioning, baking and other secondary services. There is no general strategy for food retailers to reduce GHG emission and minimal research has been done in this sector (Tassou et al, 2011). Keywords: climate change; food retailers; greenhouse gas emission; perceptions; strategies


Sign in / Sign up

Export Citation Format

Share Document