scholarly journals Plasticity in oviposition and foraging behavior in the invasive pest Drosophila suzukii across natural and agricultural landscapes

Author(s):  
Johanna Elsensohn ◽  
Hannah Burrack

1. Context and need for work The effects and extent of the impacts of agricultural insect pests in and around cropping systems is a rich field of study. However, little research exists on the presence and consequence of pest insects in undisturbed landscapes distant from crop hosts. Research in such areas may yield novel or key insights on pest behavior or ecology that is not evident from agroecosystem-based studies. 2. Approach and methods Using the invasive fruit pest Drosophila suzukii (Matsumura) as a case study, we investigated the presence and resource use patterns of this agricultural pest in wild blackberries growing within the southern Appalachian Mountain range of North Carolina over two years. 3. Main results We found D. suzukii throughout the sampled range with higher levels of infestation (D. suzukii eggs/g fruit) in all ripeness stages in natural areas as compared to cultivated blackberry samples, but especially in under-ripe fruit. 4. Main results We also explored a direct comparison of oviposition preference between wild and cultivated fruit and found higher oviposition in wild berries when equal weights of fruit were offered, but oviposition was higher in cultivated berries when fruit number was equal. 5. Synthesis and applications D. suzukii were wide-spread in previously unsampled remote, forest habitats. Forest populations laid more eggs in unripe wild-grown blackberries throughout the year than populations infesting cultivated berries. This suggests D. suzukii may change its oviposition and foraging behavior in relation to fruit type. Additionally, as D. suzukii exploits a common forest fruit prior to ripeness, further research is needed to explore how this affects wild food web dynamics and spillover to regional agroecosystems.

2020 ◽  
Author(s):  
Sylvia M. Durkin ◽  
Mahul Chakraborty ◽  
Antoine Abrieux ◽  
Kyle M. Lewald ◽  
Alice Gadau ◽  
...  

ABSTRACTStudying how novel phenotypes originate and evolve is fundamental to the field of evolutionary biology as it allows us to understand how organismal diversity is generated and maintained. However, determining the basis of novel phenotypes is challenging as it involves orchestrated changes at multiple biological levels. Here, we aim to overcome this challenge by using a comparative species framework combining behavioral, gene expression, and genomic analyses to understand the evolutionary novel egg-laying substrate-choice behavior of the invasive pest species Drosophila suzukii. First, we used egg-laying behavioral assays to understand the evolution of ripe fruit oviposition preference in D. suzukii as compared to closely related species D. subpulchrella and D. biarmipes, as well as D. melanogaster. We show that D. subpulchrella and D. biarmipes lay eggs on both ripe and rotten fruits, suggesting that the transition to ripe fruit preference was gradual. Secondly, using two-choice oviposition assays, we studied how D. suzukii, D. subpulchrella, D. biarmipes and D. melanogaster differentially process key sensory cues distinguishing ripe from rotten fruit during egg-laying. We found that D. suzukii’s preference for ripe fruit is in part mediated through a species-specific preference for stiff substrates. Lastly, we sequenced and annotated a high-quality genome for D. subpulchrella. Using comparative genomic approaches, we identified candidate genes involved in D. suzukii’s ability to seek out and target ripe fruits. Our results provide detail to the stepwise evolution of pest activity in D. suzukii, indicating important cues used by this species when finding a host, and the molecular mechanisms potentially underlying their adaptation to a new ecological niche.


Author(s):  
Samuel Cruz-Esteban ◽  
Edith Garay-Serrano ◽  
Christian Rodríguez ◽  
Julio C. Rojas

Abstract Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is recognized as an invasive pest in Europe and North America. In Mexico, it is one of the main insect pests of soft-skinned fruits such as blueberries, strawberries, raspberries, blackberries, plums, and guava. Previous studies have shown that D. suzukii uses visual and chemical cues during host plant searching. This knowledge has been used to develop traps and attractants for monitoring D. suzukii. In this study, five trap designs were evaluated to monitor D. suzukii under field conditions. Traps were baited with SuzukiiTrap®, Z-Kinol, an attractant based on acetoin and methionol, or apple cider vinegar (ACV) enriched with 10% ethanol (EtOH) with the synergistic action of carbon dioxide (CO2). Our results suggested that the attractant was the determining factor in capturing D. suzukii, while trap design seemed to play a modest role. We found that traps baited with Z-Kinol captured the highest number of D. suzukii compared to that caught by traps baited with SuzukiiTrap®, or ACV + EtOH + CO2. The highest catch numbers occurred in blackberry, followed by strawberry, raspberry, and blueberry. Traps captured more females than males. The results obtained may be useful for monitoring D. suzukii populations in Mexico and elsewhere, particularly in states where soft fruit crops are a component of agricultural activities.


Author(s):  
Sylvia M Durkin ◽  
Mahul Chakraborty ◽  
Antoine Abrieux ◽  
Kyle M Lewald ◽  
Alice Gadau ◽  
...  

Abstract Studying how novel phenotypes originate and evolve is fundamental to the field of evolutionary biology as it allows us to understand how organismal diversity is generated and maintained. However, determining the basis of novel phenotypes is challenging as it involves orchestrated changes at multiple biological levels. Here, we aim to overcome this challenge by using a comparative species framework combining behavioral, gene expression, and genomic analyses to understand the evolutionary novel egg-laying substrate-choice behavior of the invasive pest species Drosophila suzukii. First, we used egg-laying behavioral assays to understand the evolution of ripe fruit oviposition preference in D. suzukii as compared to closely related species D. subpulchrella and D. biarmipes, as well as D. melanogaster. We show that D. subpulchrella and D. biarmipes lay eggs on both ripe and rotten fruits, suggesting that the transition to ripe fruit preference was gradual. Secondly, using two-choice oviposition assays, we studied how D. suzukii, D. subpulchrella, D. biarmipes and D. melanogaster differentially process key sensory cues distinguishing ripe from rotten fruit during egg-laying. We found that D. suzukii’s preference for ripe fruit is in part mediated through a species-specific preference for stiff substrates. Lastly, we sequenced and annotated a high-quality genome for D. subpulchrella. Using comparative genomic approaches, we identified candidate genes involved in D. suzukii’s ability to seek out and target ripe fruits. Our results provide detail to the stepwise evolution of pest activity in D. suzukii, indicating important cues used by this species when finding a host, and the molecular mechanisms potentially underlying their adaptation to a new ecological niche.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 305
Author(s):  
Alexandra Siffert ◽  
Fabian Cahenzli ◽  
Patrik Kehrli ◽  
Claudia Daniel ◽  
Virginie Dekumbis ◽  
...  

The invasive Drosophila suzukii feeds and reproduces on various cultivated and wild fruits and moves between agricultural and semi-natural habitats. Hedges in agricultural landscapes play a vital role in the population development of D. suzukii, but also harbor a diverse community of natural enemies. We investigated predation by repeatedly exposing cohorts of D. suzukii pupae between June and October in dry and humid hedges at five different locations in Switzerland. We sampled predator communities and analyzed their gut content for the presence of D. suzukii DNA based on the COI marker. On average, 44% of the exposed pupae were predated. Predation was higher in dry than humid hedges, but did not differ significantly between pupae exposed on the ground or on branches and among sampling periods. Earwigs, spiders, and ants were the dominant predators. Predator communities did not vary significantly between hedge types or sampling periods. DNA of D. suzukii was detected in 3.4% of the earwigs, 1.8% of the spiders, and in one predatory bug (1.6%). While the molecular gut content analysis detected only a small proportion of predators that had fed on D. suzukii, overall predation seemed sufficient to reduce D. suzukii populations, in particular in hedges that provide few host fruit resources.


2021 ◽  
Vol 485 ◽  
pp. 118942
Author(s):  
Alberto Maceda-Veiga ◽  
Sergio Albacete ◽  
Miguel Carles-Tolrá ◽  
Juli Pujade-Villar ◽  
Jan Máca ◽  
...  

2021 ◽  
Vol 3 (2) ◽  
pp. 383-393
Author(s):  
Patient Farsia Djidjonri ◽  
Nukenine Elias Nchiwan ◽  
Hartmut Koehler

The present study investigates the effect of intercropping (maize-cowpea, maize-okra, maize-okra-cowpea, okra-cowpea) compared to insecticide application on the level of infestation of insect pests and the final yield of maize, cowpea and okra. Field experiments were conducted during the 2016 and 2017 cropping seasons in the Guinean Savannah (Dang-Ngaoundere) and Sudano Sahelian (Gouna-Garoua) agro-ecological zones in Cameroon. Our experimental design was a split plot arrangement in a randomized complete block with four replications. The main factor was assigned to the use of insecticide (Cypermethrin) and sub plots were devoted for cropping systems. We compared the efficiency of intercropping to that of Cypermethrin application on the Yield of maize, cowpea and okra as influenced by insect pest damages. The comparison of monocropped sprayed by Cypermethrin to unsprayed showed that, in Dang, insect pests reduced maize yield by 37% and 24% in 2016 and 2017, respectively, whereas in Gouna, it was lower than 8% during the both years. Reduction in seed yield by insect pests on cowpea in Dang represented 47% and 50% in 2016 and 2017, respectively, whereas in Gouna, it was 55% and 63% in 2016 and 2017, respectively. For okra, insect pests reduced okra fruit yield by 25% and 44% in Dang and 23% and 28% in Gouna, respectively, in 2016 and 2017. Crop yield was lower in intercropping compared to monoculture due to competition of plants in association on different resources. Considering the total yields obtained from each intercropping, intercropping trials resulted generally in higher yields compared to mono-culture (LER > 1) in both sites and years but the respective yields were quite different. On the basis of the results obtained, we recommend maize-cowpea intercropping as a sustainable solution to reduce the infestation level of their pest insects.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Saba Baba Mohammed ◽  
Daniel Kwadjo Dzidzienyo ◽  
Muhammad Lawan Umar ◽  
Mohammad Faguji Ishiyaku ◽  
Pangirayi Bernard Tongoona ◽  
...  

Abstract Background Low plant density and wide intra-plant spacing in traditional cowpea cropping systems are among the factors responsible for low yield on farmers’ fields. Sole cropping and improved intercropping systems have been advocated in the last few years to increase yield in the dry savannah areas of Nigeria. This study investigated the level of adoption of high yielding cowpea cropping systems including factors that influenced their use and farmers’ perceived production constraints and preferences. A total of 420 farmers across 36 villages of northern Nigeria were interviewed, and data collected was analyzed using descriptive statistics to appraise farmers predominant cowpea cropping systems and factors that determine the use of sole versus intercropping were identified with the aid of binary logit regression. Furthermore, pairwise comparison ranking was deployed to understand farmers’ view of cowpea production constraints and preferred traits. Results The results revealed that, many of the farmers (42%) still grow cowpeas in the traditional intercropping and a good number (25%) cultivate the crop as a sole crop, while 23% had fields of cowpeas in both sole and intercropping systems. Farmers reported the incidence of high insect pests, limited access to land, desire to have multiple benefits, and assurance in the event of crop failure as reasons for preference for intercropping over sole planting. The pairwise comparison ranking of constraints and preferences revealed insect pests, Striga, drought and poor access to fertilizers as major constraints to increased productivity. Many farmers indicated high yield as the most preferred trait. Conclusions Findings indicate a need for increased education and training of cowpea farmers on the importance of growing cowpeas in sole cropping and or improved intercropping systems. Genetic improvement efforts should focus on developing cowpea varieties that address farmers production constraints and reflect the diversity of consumers’ preferences for the crop. Hence, breeding for resistance to insect pests and high yield is recommended as an important priority of cowpea breeding programmes in the region.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michelle T. Fountain ◽  
Amir Badiee ◽  
Sebastian Hemer ◽  
Alvaro Delgado ◽  
Michael Mangan ◽  
...  

Abstract Spotted wing drosophila, Drosophila suzukii, is a serious invasive pest impacting the production of multiple fruit crops, including soft and stone fruits such as strawberries, raspberries and cherries. Effective control is challenging and reliant on integrated pest management which includes the use of an ever decreasing number of approved insecticides. New means to reduce the impact of this pest that can be integrated into control strategies are urgently required. In many production regions, including the UK, soft fruit are typically grown inside tunnels clad with polyethylene based materials. These can be modified to filter specific wavebands of light. We investigated whether targeted spectral modifications to cladding materials that disrupt insect vision could reduce the incidence of D. suzukii. We present a novel approach that starts from a neuroscientific investigation of insect sensory systems and ends with infield testing of new cladding materials inspired by the biological data. We show D. suzukii are predominantly sensitive to wavelengths below 405 nm (ultraviolet) and above 565 nm (orange & red) and that targeted blocking of lower wavebands (up to 430 nm) using light restricting materials reduces pest populations up to 73% in field trials.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 128 ◽  
Author(s):  
Shovon Chandra Sarkar ◽  
Endong Wang ◽  
Shengyong Wu ◽  
Zhongren Lei

Companion planting is a well-known strategy to manage insect pests and support a natural enemy population through vegetative diversification. Trap cropping is one such type of special companion planting strategy that is traditionally used for insect pest management through vegetative diversification used to attract insect pests away from the main crops during a critical time period by providing them an alternative preferred choice. Trap crops not only attract the insects for feeding and oviposition, but also act as a sink for any pathogen that may be a vector. Considerable research has been conducted on different trap crops as companion plant species to develop improved pest management strategies. Despite this, little consensus exists regarding optimal trap cropping systems for diverse pest management situations. An advantage of trap cropping over an artificially released natural enemy-based biological control could be an attractive remedy for natural enemies in cropping systems. Besides, many trap crop species can conserve natural enemies. This secondary effect of attracting natural enemies may be an advantage compared to the conventional means of pest control. However, this additional consideration requires a more knowledge-intensive background to designing an effective trap cropping system. We have provided information based on different trap crops as companion plant, their functions and an updated list of trap cropping applications to attract insect pests and natural enemies that should be proven as helpful in future trap cropping endeavors.


Sign in / Sign up

Export Citation Format

Share Document