scholarly journals Short- and long-read metabarcoding of the eukaryotic rRNA operon: evaluation of primers and comparison to shotgun metagenomics sequencing

Author(s):  
Meike Anna Christine Latz ◽  
Vesna Grujcic ◽  
Sonia Brugel ◽  
Jenny Lycken ◽  
Bengt Karlson ◽  
...  

High-throughput sequencing for analysis of environmental microbial diversity has evolved vastly over the last decade. Currently the go-to method for microbial eukaryotes is short-read metabarcoding of variable regions of the 18S rRNA gene with <500 bp amplicons. However, there is a growing interest in long-read sequencing of amplicons covering the rRNA operon for improving taxonomic resolution. For both methods, the choice of primers is crucial. It determines if community members are covered, if they can be identified at a satisfactory taxonomic level, and if the obtained community profile is representative. Here, we designed new primers targeting 18S and 28S rRNA based on 177,934 and 21,072 database sequences, respectively. The primers were evaluated in silico along with published primers on reference sequence databases and marine metagenomics datasets. We further evaluated a subset of the primers for short- and long-read sequencing on environmental samples in vitro and compared the obtained community profile with primer-unbiased metagenomic sequencing. Of the short-read pairs, a new V6-V8 pair and the V4_Balzano pair used with a simplified PCR protocol provided good results in silico and in vitro. Fewer differences were observed between the long-read primer pairs. The long-read amplicons and ITS1 alone provided higher taxonomic resolution than V4. Together, our results represent a reference and guide for selection of robust primers for research on and environmental monitoring of microbial eukaryotes.

2020 ◽  
Author(s):  
Lauren Coombe ◽  
Vladimir Nikolić ◽  
Justin Chu ◽  
Inanc Birol ◽  
René L. Warren

AbstractSummaryThe ability to generate high-quality genome sequences is cornerstone to modern biological research. Even with recent advancements in sequencing technologies, many genome assemblies are still not achieving reference-grade. Here, we introduce ntJoin, a tool that leverages structural synteny between a draft assembly and reference sequence(s) to contiguate and correct the former with respect to the latter. Instead of alignments, ntJoin uses a lightweight mapping approach based on a graph data structure generated from ordered minimizer sketches. The tool can be used in a variety of different applications, including improving a draft assembly with a reference-grade genome, a short read assembly with a draft long read assembly, and a draft assembly with an assembly from a closely-related species. When scaffolding a human short read assembly using the reference human genome or a long read assembly, ntJoin improves the NGA50 length 23- and 13-fold, respectively, in under 13 m, using less than 11 GB of RAM. Compared to existing reference-guided assemblers, ntJoin generates highly contiguous assemblies faster and using less memory.Availability and implementationntJoin is written in C++ and Python, and is freely available at https://github.com/bcgsc/[email protected]


2020 ◽  
Vol 21 (19) ◽  
pp. 7110
Author(s):  
Po-Li Wei ◽  
Ching-Sheng Hung ◽  
Yi-Wei Kao ◽  
Ying-Chin Lin ◽  
Cheng-Yang Lee ◽  
...  

Accurate and rapid identification of microbiotic communities using 16S ribosomal (r)RNA sequencing is a critical task for expanding medical and clinical applications. Next-generation sequencing (NGS) is widely considered a practical approach for direct application to communities without the need for in vitro culturing. In this report, a comparative evaluation of short-read (Illumina) and long-read (Oxford Nanopore Technologies (ONT)) platforms toward 16S rRNA sequencing with the same batch of total genomic DNA extracted from fecal samples is presented. Different 16S gene regions were amplified, bar-coded, and sequenced using the Illumina MiSeq and ONT MinION sequencers and corresponding kits. Mapping of the sequenced amplicon using MinION to the entire 16S rRNA gene was analyzed with the cloud-based EPI2ME algorithm. V3–V4 reads generated using MiSeq were aligned by applying the CLC genomics workbench. More than 90% of sequenced reads generated using distinct sequencers were accurately classified at the genus or species level. The misclassification of sequenced reads at the species level between the two approaches was less substantial as expected. Taken together, the comparative results demonstrate that MinION sequencing platform coupled with the corresponding algorithm could function as a practicable strategy in classifying bacterial community to the species level.


2018 ◽  
Author(s):  
Denis Bertrand ◽  
Jim Shaw ◽  
Manesh Kalathiappan ◽  
Amanda Hui Qi Ng ◽  
Senthil Muthiah ◽  
...  

AbstractThe analysis of information rich whole-metagenome datasets acquired from complex microbial communities is often restricted by the fragmented nature of assembly from short-read sequencing. The availability of long-reads from third-generation sequencing technologies (e.g. PacBio or Oxford Nanopore) can help improve assembly quality in principle, but high error rates and low throughput have limited their application in metagenomics. In this work, we describe the first hybrid metagenomic assembler which combines the advantages of short and long-read technologies, providing an order of magnitude improvement in contiguity compared to short read assemblies, and high base-pair level accuracy. The proposed approach (OPERA-MS) integrates a novel assembly-based metagenome clustering technique with an exact scaffolding algorithm that can efficiently assemble repeat rich sequences. Based on evaluations with defined in vitro communities and virtual gut microbiomes, we show that it is possible to assemble near complete genomes from metagenomes with as little as 9× long read coverage, thus enabling high quality assembly of lowly abundant species (<1%). Furthermore, OPERA-MS’s fine-grained clustering is able to deconvolute and assemble multiple genomes of the same species in a single sample, allowing us to study the complex dynamics of the human microbiome at the sub-species level. Applying nanopore sequencing to gut metagenomes of patients undergoing antibiotic treatment, we show that long reads can be obtained from stool samples in clinical studies to produce more meaningful metagenomic assemblies (up to 200× improvement over short-read assemblies), including the closed assembly of >80 putative plasmid/phage sequences and a 263kbp jumbo phage. Our results highlight that high-quality hybrid assemblies provide an unprecedented view of the gut resistome in these patients, including strain dynamics and identification of novel plasmid sequences.


2021 ◽  
Author(s):  
Jeanette L. Gehrig ◽  
Daniel M. Portik ◽  
Mark D. Driscoll ◽  
Eric Jackson ◽  
Shreyasee Chakraborty ◽  
...  

A longstanding challenge in human microbiome research is achieving the taxonomic and functional resolution needed to generate testable hypotheses about the gut microbiome's impact on health and disease. More recently, this challenge has extended to a need for in-depth understanding of the pharmacokinetics and pharmacodynamics of clinical microbiome-based interventions. Whole genome metagenomic sequencing provides high taxonomic resolution and information on metagenome functional capacity, but the required deep sequencing is costly. For this reason, short-read sequencing of the bacterial 16S ribosomal RNA (rRNA) gene is the standard for microbiota profiling, despite its poor taxonomic resolution. The recent falling costs and improved fidelity of long-read sequencing warrant an evaluation of this approach for clinical microbiome analysis. We used samples from participants enrolled in a Phase 1b clinical trial of a novel live biotherapeutic product to perform a comparative analysis of short-read and long-read amplicon and metagenomic sequencing approaches to assess their value for generating informative and actionable clinical microbiome data. Comparison of ubiquitous short-read 16S rRNA amplicon profiling to long-read profiling of the 16S-ITS-23S rRNA amplicon showed that only the latter provided strain-level community resolution and insight into novel taxa. Across all methods, overall community taxonomic profiles were comparable and relationships between samples were conserved, highlighting the accuracy of modern microbiome analysis pipelines. All methods identified an active ingredient strain in treated study participants, though detection confidence was higher for long-read methods. Read coverage from both metagenomic methods provided evidence of active ingredient strain replication in some treated participants. Compared to short-read metagenomics, approximately twice the proportion of long reads were assigned functional annotations (63% vs. 34%). Finally, similar bacterial metagenome-assembled genomes (MAGs) were recovered across short-read and long-read metagenomic methods, although MAGs recovered from long reads were more complete. Overall, despite higher costs, long-read microbiome characterization provides added scientific value for clinical microbiome research in the form of higher taxonomic and functional resolution and improved recovery of microbial genomes compared to traditional short-read methodologies.


2020 ◽  
Vol 36 (12) ◽  
pp. 3885-3887 ◽  
Author(s):  
Lauren Coombe ◽  
Vladimir Nikolić ◽  
Justin Chu ◽  
Inanc Birol ◽  
René L Warren

Abstract Summary The ability to generate high-quality genome sequences is cornerstone to modern biological research. Even with recent advancements in sequencing technologies, many genome assemblies are still not achieving reference-grade. Here, we introduce ntJoin, a tool that leverages structural synteny between a draft assembly and reference sequence(s) to contiguate and correct the former with respect to the latter. Instead of alignments, ntJoin uses a lightweight mapping approach based on a graph data structure generated from ordered minimizer sketches. The tool can be used in a variety of different applications, including improving a draft assembly with a reference-grade genome, a short-read assembly with a draft long-read assembly and a draft assembly with an assembly from a closely related species. When scaffolding a human short-read assembly using the reference human genome or a long-read assembly, ntJoin improves the NGA50 length 23- and 13-fold, respectively, in under 13 m, using &lt;11 GB of RAM. Compared to existing reference-guided scaffolders, ntJoin generates highly contiguous assemblies faster and using less memory. Availability and implementation ntJoin is written in C++ and Python and is freely available at https://github.com/bcgsc/ntjoin. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Author(s):  
Christophe Guyeux ◽  
Christophe Sola ◽  
Guislaine Refrégier

AbstractSpoligotyping, a graphical partial display of the CRISPR locus that can be produced in vitro or in silico, is an important tool for analyzing the diversity of given Mycobacterium tuberculosis complex (MTC) isolates. As other CRISPR loci, this locus is made up of an alternation between direct repeats and spacers, and flanked by cas genes. Unveiling the genetic mechanisms of its evolution requires to have a fairly large amount of fully reconstructed loci among all MTC lineages.In this article, we point out and resolve the problem of CRISPR reconstruction based on short read sequences. We first show that more than 1/3 of the currently assembled genomes available for this complex contain a CRISPR locus erroneously reconstructed, and errors can be very significant. Second, we present a new computational method allowing this locus to be reconstructed extensively and reliably in silico using short read sequencing runs. Third, using this method, we describe new structural characteristics of CRISPR locus by lineages. We show how both the classical experimental in vitro approach and the basic in silico spoligotyping provided by existing analytic tools miss a whole diversity of this locus in MTC, by not capturing duplications, spacer and direct repeats variants, and IS6110 insertion locations. This description is extended in a second article that presents general rules for the evolution of the CRISPR locus in MTC.This work opens new perspectives for a larger exploration of CRISPR loci diversity and of mechanisms involved in its evolution and its functionality.


Author(s):  
Markus Boel ◽  
Oscar J. Abilez ◽  
Ahmed N Assar ◽  
Christopher K. Zarins ◽  
Ellen Kuhl

Author(s):  
Jaynthy C. ◽  
N. Premjanu ◽  
Abhinav Srivastava

Cancer is a major disease with millions of patients diagnosed each year with high mortality around the world. Various studies are still going on to study the further mechanisms and pathways of the cancer cell proliferation. Fucosylation is one of the most important oligosaccharide modifications involved in cancer and inflammation. In cancer development increased core fucosylation by FUT8 play an important role in cell proliferation. Down regulation of FUT8 expression may help cure lung cancer. Therefore the computational study based on the down regulation mechanism of FUT8 was mechanised. Sapota fruit extract, containing 4-Ogalloylchlorogenic acid was used as the inhibitor against FUT-8 as target and docking was performed using in-silico tool, Accelrys Discovery Studio. There were several conformations of the docked result, and conformation 1 showed 80% dock score between the ligand and the target. Further the amino acids of the inhibitor involved in docking were studied using another tool, Ligplot. Thus, in-silico analysis based on drug designing parameters shows that the fruit extract can be studied further using in-vitro techniques to know its pharmacokinetics.


2019 ◽  
Author(s):  
Filip Fratev ◽  
Denisse A. Gutierrez ◽  
Renato J. Aguilera ◽  
suman sirimulla

AKT1 is emerging as a useful target for treating cancer. Herein, we discovered a new set of ligands that inhibit the AKT1, as shown by in vitro binding and cell line studies, using a newly designed virtual screening protocol that combines structure-based pharmacophore and docking screens. Taking together with the biological data, the combination of structure based pharamcophore and docking methods demonstrated reasonable success rate in identifying new inhibitors (60-70%) proving the success of aforementioned approach. A detail analysis of the ligand-protein interactions was performed explaining observed activities.<br>


Sign in / Sign up

Export Citation Format

Share Document