scholarly journals Evolution of parasitoid host preference and performance in response to an invasive host acting as evolutionary trap

Author(s):  
Astrid Kruitwagen ◽  
Leo Beukeboom ◽  
Bregje Wertheim ◽  
Sander van Doorn

The invasion of a novel host species can create a mismatch in host choice and offspring survival (performance) when native parasitoids attempt to exploit the invasive host without being able to circumvent its resistance mechanisms. Invasive hosts can therefore act as evolutionary trap reducing parasitoids’ fitness and this may eventually lead to their extinction. Yet, escape from the trap can occur when parasitoids evolve behavioural avoidance or a physiological strategy compatible with the trap host, resulting in either host-range expansion or a complete host-shift. We developed an individual based model to investigate which conditions promote parasitoids to evolve behavioural preference that matches their performance, including host-trap avoidance, and which conditions lead to adaptations to the unsuitable hosts. One important aspect of these conditions was reduced host survival during incompatible interaction, where a failed attempt by a parasitoid resulted in host killing. This non-reproductive host mortality had a strong influence on the likelihood of establishment of novel host-parasitoid relationship. Killing unsuitable hosts can constrain adaptation under conditions which in fact promoted adaptation when parasitoids would leave the trap host unharmed and survive parasitoid attack. Moreover, our model revealed that host-search efficiency and genetic variation in host-preference play a key role in the likelihood that parasitoids will include the suboptimal host in their host range, or will evolve behavioural avoidance resulting in specialization and host-range conservation, respectively. Hence, invasive species might change the evolutionarily trajectory of native parasitoid species, which is important for predicting biocontrol ability of native parasitoids towards novel hosts.

Genetica ◽  
2009 ◽  
Vol 137 (1) ◽  
pp. 87-97 ◽  
Author(s):  
Thorsten Diegisser ◽  
Christian Tritsch ◽  
Alfred Seitz ◽  
Jes Johannesen

2021 ◽  
Author(s):  
Joanne S. Griffin ◽  
Michael Gerth ◽  
Gregory D. D. Hurst

AbstractHeritable symbionts represent important components of host biology, both as antagonistic reproductive parasites and as beneficial protective partners. An important component of heritable microbes’ biology is their ability to establish in new host species, a process equivalent to a host shift for an infectiously transmitted parasite or pathogen. For a host shift to occur, the symbiont must be compatible with the host: it must not cause excess pathology, must have good vertical transmission, and possess a drive phenotype that enables spread. Classically, compatibility has been considered a declining function of genetic distance between novel and ancestral host species. Here we investigate the evolutionary lability of compatibility to heritable microbes by comparing the capacity for a symbiont to establish in two novel host species equally related to the ancestral host. Compatibility of the protective Spiroplasma from D. hydei with D. simulans and D. melanogaster was tested. The Spiroplasma had contrasting compatibility in these two host species. The transinfection showed pathology and low vertical transmission in D. melanogaster but was asymptomatic and transmitted with high efficiency in D. simulans. These results were not affected by the presence/absence of Wolbachia in either of the two species. The pattern of protection was not congruent with that for pathology/transmission, with protection being weaker in the D. simulans, the host in which Spiroplasma was asymptomatic and transmitted well. Further work indicated pathological interactions occurred in D. sechellia and D. yakuba, indicating that D. simulans was unusual in being able to carry the symbiont without damage. The differing compatibility of the symbiont with these closely related host species emphasises first the rapidity with which host-symbiont compatibility evolves despite compatibility itself not being subject to direct selection, and second the independence of the different components of compatibility (pathology, transmission, protection). This requirement to fit three different independently evolving aspects of compatibility, if commonly observed, is likely to be a major feature limiting the rate of host shifts. Moving forward, the variation between sibling species pairs observed above provides an opportunity to identify the mechanisms behind variable compatibility between closely related host species, which will drive hypotheses as to the evolutionary drivers of compatibility variation.


2010 ◽  
Vol 278 (1711) ◽  
pp. 1539-1547 ◽  
Author(s):  
Matthew L. Forister ◽  
Zachariah Gompert ◽  
Chris C. Nice ◽  
Glen W. Forister ◽  
James A. Fordyce

The role of mutualistic interactions in adaptive diversification has not been thoroughly examined. Lycaenid butterflies provide excellent systems for exploring mutualistic interactions, as more than half of this family is known to use ants as a resource in interactions that range from parasitism to mutualism. We investigate the hypothesis that protection from predators offered to caterpillars by ants might facilitate host-range evolution. Specifically, experiments with the butterfly Lycaeides melissa investigated the role of ant association in the use of a novel host, alfalfa, Medicago sativa , which is a sub-optimal host for larval development. Survival on alfalfa is increased by the presence of ants, thus supporting the hypothesis that interaction with ants might be important for host-range evolution. Using a demographic model to explore ecological conditions associated with host-range expansion in L. melissa , we conclude that the presence of ants might be an essential component for populations persisting on the novel, sub-optimal host.


2009 ◽  
Vol 12 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Midori TUDA ◽  
Li-Hsin WU ◽  
Yoichi TATEISHI ◽  
Chawalit NIYOMDHAM ◽  
Sawai BURANAPANICHPAN ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 905
Author(s):  
Alejandro Reyes ◽  
Martha J. Vives

Phage biology has been developing for the last hundred years, and the potential of phages as tools and treatments has been known since their early discovery. However, the lack of knowledge of the molecular mechanisms coded in phage genomes hindered the development of the field. With current molecular methods, the last decade has been a resurgence of the field. The Special Issue on “Diversity and Evolution of Phage Genomes” is a great example with its 17 manuscripts published. It covers some of the latest methods to sample and characterize environmental and host associated viromes, considering experimental biases and computational developments. Furthermore, the use of molecular tools coupled with traditional methods has allowed to isolate and characterize viruses from different hosts and environments with such diversity that even a new viral class is being proposed. The viruses described cover all different phage families and lifestyles. However, is not only about diversity; the molecular evolution is studied in a set of manuscripts looking at phage-host interactions and their capacity to uncover the frequency and type of mutations behind the bacterial resistance mechanisms and viral pathogenesis, and such methods are opening new ways into identifying potential receptors and characterizing the bacterial host range.


2020 ◽  
pp. 1-13
Author(s):  
Henry Murillo Pacheco ◽  
Sherah Vanlaerhoven ◽  
M. Angeles Marcos Garcia

Abstract We evaluated the host suitability and related traits of Trichoplusia ni Hübner (Lepidoptera: Noctuidae) and Chrysodeixis chalcites Esper (Lepidoptera: Noctuidae), which is nonnative in North America, for the native parasitoids Campoletis sonorensis Cameron (Hymenoptera: Ichneumonidae) and Copidosoma floridanum Ashmead (Hymenoptera: Encyrtidae), and the nonnative parasitoid Cotesia vanessae Reinhard (Hymenoptera: Braconidae). For the larval parasitoid C. sonorensis and C. vanessae trials, three-day-old larvae of both hosts were used, whereas one-day-old eggs of both hosts were used for the egg–larval parasitoid C. floridanum trial. For suitability parameters on each host exposed separately to each of the three parasitoid species, we measured parasitoid emergence (parasitoid success), parasitoids that did not emerge (parasitoid cocoon mortality), the proportion of male offspring (parasitoid sex ratio), hosts that developed into moths (host success), hosts that died without developing into moths or producing a parasitoid (host mortality), parasitoids emerging from cocoon masses (brood size), and the developmental times of parasitoids and hosts. For C. sonorensis, the native host and the nonnative host were found to be similarly suitable. For C. vanessae, the native host was more suitable than the nonnative host. For C. floridanum, the native host was suitable, whereas the nonnative host was not; however, sublethal effects on both the native and nonnative hosts were observed. The differential suitability of the hosts observed in this study contributes to the understanding of this measure as a dynamic factor in the expansion of parasitoids into novel host species.


2004 ◽  
Vol 78 (22) ◽  
pp. 12189-12197 ◽  
Author(s):  
Yong Tae Jung ◽  
Tiyun Wu ◽  
Christine A. Kozak

ABSTRACT A variant ecotropic Friend murine leukemia virus, F-S MLV, is capable of inducing the formation of large multinucleated syncytia in Mus dunni cells. This cytopathicity resembles that of Spl574 MLV, a novel variant recently isolated from the spleen of a Mus spicilegus mouse neonatally inoculated with Moloney MLV. F-S MLV is an N-tropic Friend MLV that also has the unusual ability to infect hamster cells, which are normally resistant to mouse ecotropic MLVs. Syncytium induction by both F-S MLV and Spl574 is accompanied by the accumulation of large amounts of unintegrated viral DNA, a hallmark of pathogenic retroviruses, but not previously reported for mouse ecotropic gammaretroviruses. Sequencing and site-specific mutagenesis determined that the syncytium-inducing phenotype of F-S MLV can be attributed to a single amino acid substitution (S84A) in the VRA region of the viral env gene. This site corresponds to that of the single substitution previously shown to be responsible for the cytopathicity of Spl574, S82F. The S84A substitution in F-S MLV also contributes to the ability of this virus to infect hamster cells, but Spl574 MLV is unable to infect hamster cells. Because this serine residue is one of the critical amino acids that form the CAT-1 receptor binding site, and because M. dunni and hamster cells have variant CAT-1 receptors, these results suggest that syncytium formation as well as altered host range may be a consequence of altered interaction between virus and receptor.


Sign in / Sign up

Export Citation Format

Share Document