scholarly journals Coupled CFD-DEM modelling to predict how EPS affects bacterial biofilm deformation, recovery and detachment under flow conditions

Author(s):  
YUQING XIA ◽  
Pahala Jayathilake ◽  
Bowen Li ◽  
Paolo Zuliani ◽  
David Deehan ◽  
...  

The deformation and detachment of bacterial biofilm are related to the structural and mechanical properties of the biofilm itself. Extracellular polymeric substances (EPS) play an important role on keeping the mechanical stability of biofilms. The understanding of biofilm mechanics and detachment can help to reveal biofilm survival mechanisms under fluid shear and provide insight about what flows might be needed to remove biofilm in a cleaning cycle or for a ship to remove biofilms. However, how the EPS may affect biofilm mechanics and its deformation in flow conditions remains elusive. To address this, a coupled computational fluid dynamic – discrete element method (CFD-DEM) model was developed. The mechanisms of biofilm detachment, such as erosion and sloughing have been revealed by imposing hydrodynamic fluid flow at different velocities and loading rates. The model, which also allows adjustment of the proportion of different functional group of microorganisms in the biofilm, enables the study of the contribution of EPS towards biofilm resistance to fluid shear stress. Furthermore, the stress-strain curves during biofilm deformation have been captured by loading and unloading fluid shear stress to study the viscoelastic properties of the biofilm.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3934-3934
Author(s):  
Zhou Zhou ◽  
Hiuwan Choi ◽  
Zhenyin Tao ◽  
Khatira Aboulfatova ◽  
Leticia Nolasco ◽  
...  

Abstract Von Willebrand factor (VWF) multimers tether platelets to subendothelium exposed at the site of vessel injury to initiate the bleeding arrest. Upon synthesized, VWF multimers are either constitutively secreted or packed into the storage granules, where they are enriched in ultra-large (UL) multimers that are active in forming spontaneous high strength bonds with the GP Ib-IX-V complex on platelets. This hyper-reactivity of ULVWF multimers is in contrast to VWF multimers circulating in plasma (pVWF) that need to be activated by modulators or high fluid shear stress to aggregate platelets. The biochemical and structural bases for the functional difference between ULVWF and pVWF multimers are not known. We have recently shown that a portion of pVWF, but not ULVWF multimers contain surface exposed free thiols in the D3 and C domains. High fluid shear stress promotes the formation of new disulfide bonds utilizing the thiols to enhance VWF binding to platelets, suggesting that the shear-induced thiol-disulfide exchange may serve as a mechanism for the shear-induced activation of pVWF multimers. ULVWF freshly secreted from endothelial cells forms string-like structures that can be elongated by pVWF multimers through a covalent means. The different thiol distribution between ULVWF and its plasma counterpart may be caused by the former being cleaved by the zinc metalloprotease ADAMTS-13 at a single peptide bond of Y1065-M1606 in the A2 domain. Here, we provide several lines of evidence to demonstrate that ADAMTS-13 also contains a reductase-like activity that plays a role in cleaving ULVWF strings under flow conditions and maintaining circulating VWF multimers in an inactive (thiol) state. First, more than 90% of pVWF non-specifically adhered to the surface of a cone-plate viscometer when pVWF was exposed to a pathological high shear stress of 100 dyn/cm2 for 3 min at 37°C. The adhesion was prevented by recombinant (r) ADAMTS-13 or a truncation mutant that lacked the catalytic domain. Second, rADAMTS-13 prevented the shear-induced thiol-disulfide exchange so that free thiols remained in pVWF after shear exposure. This activity was not blocked by 5 mM of EDTA and was detectable with the N-terminal truncated mutant, suggesting that it is independent of the VWF-cleaving activity. We further found that rADAMTS-13 was able to reduce disulfide bonds, converting the disulfide forms of sheared pVWF to the thiol forms, suggesting that ADAMTS-13 prevents the thiol-disulfide exchange by disulfide bond reduction, not a steric hindered effect. Third, ADAMTS-13 contains the surface exposed thiol(s) that is necessary for the metalloprotease to attack and break a disulfide bond. Unlike VWF multimers, these thiols remained after the metalloprotease was exposed to a pathological high shear stress of 100 dyn/cm2. Fourth, using a series of N- and C-terminal truncation mutants, we located the thiol(s) potentially involved in VWF reduction to the 2nd to 8th TSP-1 motifs and CUB-1 domain of ADAMTS-13. Finally, ethylmaleimide (NEM), which blocks free thiols, did not inhibit rADAMTS-13 to cleave pVWF multimers under static conditions and in the presence of urea and barium. NEM-treated rADAMTS-13 retained only 27.5±4.9% activity in cleaving ULVWF strings under flow conditions as compared to untreated enzyme. These data characterizes a novel mechanism that plays a regulatory role in cleaving ULVWF strings and maintaining the circulating pVWF multimers in inactive forms.


Author(s):  
Ping Tang ◽  
Jian Yang ◽  
Jinyang Zheng ◽  
Guofu Ou ◽  
Shizheng He ◽  
...  

Erosion results from interactions between the pipe surface and fluids traveling along the surface. Fluid-structure interactions have a profound influence on the erosion that takes place. The location, rate and extent of thinning or loss of a protective surface film depend strongly on the nature of the flow regime and interactions. Erosion-corrosion involves the modification, thinning and removal of protective films composed of corrosion product or scale deposits from a susceptible metal surface by fluid shear stress under high turbulence conditions. In the paper, multi-scale simulation of fluid-structure interactions between the flow and the protective films on the pipe surface is presented. The fluid shear stress and pressure of the flow in a pipe with a step is obtained by macro-fluid dynamic analysis. Viscous forces and the system’s pressure impose forces to the surface of the pipe. Using micro-simulation method, the fluid-structure interactions between the flow and the protective films is modeled. The deformation of the protective films is shown and changed with the different velocity and flow regime. Using the multi-scale simulation of fluid-structure interactions, the location, rate and extent of the erosion on the pipe surface can be predicted. The results are proved by the actual instances.


2008 ◽  
Vol 100 (05) ◽  
pp. 857-863 ◽  
Author(s):  
Chalmette Ball ◽  
K. Vinod Vijayan ◽  
Trung Nguyen ◽  
Kim Anthony ◽  
Paul F. Bray ◽  
...  

SummaryThe platelet integrin αIIbβ3 mediates the final step of platelet aggregation that requires pre-activation through an inside-out signal initiated by agonists. Experiments conducted under static conditions using platelet-rich plasma show that platelet activation and adhesion activity of αIIbβ3 are regulated by glutathione (GSH-GSSG) redox potential.However,it remains unclear as to whether GSH-GSSG exerts its regulatory role in platelets by direct targeting of αIIbβ3 or intracellular signals that activate the integrin. A role of fluid shear stress is also not known. We examined the effects of GSH-GSSG on the adhesion of CHO cells expressing two HPA variants of human αIIbβ3 to the immobilized fibrinogen and von Willebrand factor (VWF) under flow conditions. GSH-GSSG dose-dependently reduced the number of adherent cells to fibrinogen and VWF under 2.5 dyn/cm2 of shear stress, a physical force calculated to be 110 dyne on platelets. GSH treatment also abolished the hyperadhesion activity of cells expressing the Pro33 variant of αIIbβ3.The inhibition was also observed with washed platelets. The data differ from the early observation that GSH enhanced platelet aggregation induced by sub-threshold concentrations of platelet agonists. The results suggest that GSH may have distinct effects on agonist-induced αIIbβ3 activation and on the αIIbβ3-fibrinogen or αIIbβ3-VWF bonds when exposed to fluid shear stress. They further suggest that the HPA phenotype may be redox-regulated.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (6) ◽  
pp. 1563-1573 ◽  
Author(s):  
Sarvesh Varma ◽  
Joel Voldman

We present a cell-based sensor embedded in NIH3T3 cells that fluoresces upon the application of fluid shear stress (FSS), as a simple and versatile method to assess the impact of various microsystem flow conditions on cell health.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Julia C. Chen ◽  
Mardonn Chua ◽  
Raymond B. Bellon ◽  
Christopher R. Jacobs

Osteogenic lineage commitment is often evaluated by analyzing gene expression. However, many genes are transiently expressed during differentiation. The availability of genes for expression is influenced by epigenetic state, which affects the heterochromatin structure. DNA methylation, a form of epigenetic regulation, is stable and heritable. Therefore, analyzing methylation status may be less temporally dependent and more informative for evaluating lineage commitment. Here we analyzed the effect of mechanical stimulation on osteogenic differentiation by applying fluid shear stress for 24 hr to osteocytes and then applying the osteocyte-conditioned medium (CM) to progenitor cells. We analyzed gene expression and changes in DNA methylation after 24 hr of exposure to the CM using quantitative real-time polymerase chain reaction and bisulfite sequencing. With fluid shear stress stimulation, methylation decreased for both adipogenic and osteogenic markers, which typically increases availability of genes for expression. After only 24 hr of exposure to CM, we also observed increases in expression of later osteogenic markers that are typically observed to increase after seven days or more with biochemical induction. However, we observed a decrease or no change in early osteogenic markers and decreases in adipogenic gene expression. Treatment of a demethylating agent produced an increase in all genes. The results indicate that fluid shear stress stimulation rapidly promotes the availability of genes for expression, but also specifically increases gene expression of later osteogenic markers.


Sign in / Sign up

Export Citation Format

Share Document