scholarly journals Excavated farmland with plastic mulching as a strategy in saving water and controlling soil salinization in dryland agricultural areas

Author(s):  
Zengming Ke ◽  
Xiaoli Liu ◽  
Lihui Ma ◽  
Qinge Dongle ◽  
Feng Jiao ◽  
...  

Water shortage and soil salinization in gully farmland comprising sediment deposited farmland (SF) and excavated farmland (EF) have become a widespread concern in the loess hilly region. A two-year field experiment was conducted to assess the soil water content (SWC) and salt content (SSC) and their effect on the spring maize yield and water use efficiency in SF and EF. Eight treatments comprising flat cropping without mulching (1), ridge planting without mulching (2), ridge planting with plastic mulching (3), and ridge planting with straw mulching (4) were tested in the SF and EF plots, respectively. The results showed that the yield was higher in SF than EF, whereas the water use efficiency was significantly higher in EF because the bottom water flux was 117.4% higher in SF than EF (P < 0.01). A significant positive correlation was found between the average SWC and yield (P < 0.01), thereby indicating that the yield was severely limited by the SWC. Thus, the higher water use efficiency in EF has important implications for alleviating water scarcity during agricultural production in this region. The risk of soil salinization was decreased greatly by treatment 3 where the SSC was decreased in EF and SF were 0.09 g kg–1 and 0.08 g kg–1, respectively. In addition, treatment 3 had the most significant impacts on the yield and water use efficiency. Our study provided appropriate land type and effective tillage measure for the sustainable development in dryland agricultural areas.

2018 ◽  
Author(s):  
Sven Boese ◽  
Martin Jung ◽  
Nuno Carvalhais ◽  
Adriaan J. Teuling ◽  
Markus Reichstein

Abstract. Water-use efficiency, defined as the ratio of carbon assimilation over evapotranspiration (ET), is a key metric to assess ecosystem functioning in response to environmental conditions. It remains unclear which factors control this ratio during periods of extended water-limitation, and current semi-empirical water-use efficiency models fail to reproduce observed ET dynamics for these periods. Here, we use dry-down events occurring at eddy-covariance flux tower sites in the FLUXNET database as natural experiments to assess if and how decreasing soil-water availability modifies water-use efficiency on ecosystem scale. We demonstrate that an attenuating soil-water availability factor in junction with a previously discovered additive radiation term is necessary to accurately predict ET flux magnitudes and dry-down lengths of these water-limited periods. In an analysis of the attenuation, 20–33 % of the observed decline in ET was due to the previously unconsidered soil-water availability effect. We conclude by noting the rates of ET decline differ significantly between FLUXNET sites with tall and short vegetation types and discuss the dependency of this rate on the variability of seasonal dryness.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e83103 ◽  
Author(s):  
Haibing He ◽  
Fuyu Ma ◽  
Ru Yang ◽  
Lin Chen ◽  
Biao Jia ◽  
...  

2018 ◽  
Vol 76 (2) ◽  
pp. 115-130 ◽  
Author(s):  
G Guo ◽  
K Fang ◽  
J Li ◽  
HW Linderholm ◽  
D Li ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
pp. 822-832
Author(s):  
Halim Mahmud Bhuyan ◽  
Most. Razina Ferdousi ◽  
Mohammad Toufiq Iqbal ◽  
Ahmed Khairul Hasan

Utilization of urea super granule (USG) with raised bed cultivation system for transplanted boro (winter, irrigated) rice production is a major concern now days. A field experiment was conducted in the chuadanga district of Bangladesh to compare the two cultivation methods: deep placement of USG on raised bed with boro rice, and prilled urea (PU) broadcasting in conventional planting. Results showed that USG in raised bed planting increased grain yields of transplanted boro rice by up to 18.18% over PU in conventional planting. Deep placement of USG in raised bed planting increased the number of panicle m-2, number of grains panicle-1 and 1000-grains weight of boro rice than the PU in conventional planting. Better plant growth was observed by deep placement of USG in raised bed planting compared to PU in conventional planting. Sterility percentage and weed infestation were lower on USG in raised bed planting compared to the PU in conventional planting methods. Forty seven percent irrigation water and application time could be saved by USG in raised bed planting than PU in conventional planting. Deep placement of USG in bed saved N fertilizer consumption over conventional planting. Water use efficiency for grain and biomass production was higher with deep placement of USG in bed planting than the PU broadcasting in conventional planting methods. Similarly, agronomic efficiency of N fertilizer by USG in bed planting was significantly higher than the PU broadcasting in conventional planting. This study concluded that deep placement of USG in raised bed planting for transplanted boro rice is a new approach to achieve fertilizer and water use efficiency as well as higher yield and less water input compared to existing agronomic practices in Bangladesh.


Sign in / Sign up

Export Citation Format

Share Document