scholarly journals Integrating partitioned evapotranspiration data into hydrologic models: vegetation parameterization and uncertainty quantification of simulated plant water use

Author(s):  
Adam Schreiner-McGraw ◽  
Hoori Ajami ◽  
Ray Anderson ◽  
Dong Wang

Accurate simulation of plant water use across agricultural ecosystems is essential for various applications, including precision agriculture, quantifying groundwater recharge, and optimizing irrigation rates. Previous approaches to integrating plant water use data into hydrologic models have relied on evapotranspiration (ET) observations. Recently, the flux variance similarity approach has been developed to partition ET to transpiration (T) and evaporation, providing an opportunity to use T data to parameterize models. To explore the value of T/ET data in improving hydrologic model performance, we examined multiple approaches to incorporate these observations for vegetation parameterization. We used ET observations from 5 eddy covariance towers located in the San Joaquin Valley, California, to parameterize orchard crops in an integrated land surface – groundwater model. We find that a simple approach of selecting the best parameter sets based on ET and T performance metrics works best at these study sites. Selecting parameters based on performance relative to observed ET creates an uncertainty of 27% relative to the observed value. When parameters are selected using both T and ET data, this uncertainty drops to 24%. Similarly, the uncertainty in potential groundwater recharge drops from 63% to 58% when parameters are selected with ET or T and ET data, respectively. Additionally, using crop type parameters results in similar levels of simulated ET as using site-specific parameters. Different irrigation schemes create high amounts of uncertainty and highlight the need for accurate estimates of irrigation when performing water budget studies.

2021 ◽  
Author(s):  
Sophia Eugeni ◽  
Eric Vaags ◽  
Steven V. Weijs

<p>Accurate hydrologic modelling is critical to effective water resource management. As catchment attributes strongly influence the hydrologic behaviors in an area, they can be used to inform hydrologic models to better predict the discharge in a basin. Some basins may be more difficult to accurately predict than others. The difficulty in predicting discharge may also be related to the complexity of the discharge signal. The study establishes the relationship between a catchment’s static attributes and hydrologic model performance in those catchments, and also investigates the link to complexity, which we quantify with measures of compressibility based in information theory. </p><p>The project analyzes a large national dataset, comprised of catchment attributes for basins across the United States, paired with established performance metrics for corresponding hydrologic models. Principal Component Analysis (PCA) was completed on the catchment attributes data to determine the strongest modes in the input. The basins were clustered according to their catchment attributes and the performance within the clusters was compared. </p><p>Significant differences in model performance emerged between the clusters of basins. For the complexity analysis, details of the implementation and technical challenges will be discussed, as well as preliminary results.</p>


2015 ◽  
Vol 8 (2) ◽  
pp. 431-452 ◽  
Author(s):  
M. G. De Kauwe ◽  
J. Kala ◽  
Y.-S. Lin ◽  
A. J. Pitman ◽  
B. E. Medlyn ◽  
...  

Abstract. Stomatal conductance (gs) affects the fluxes of carbon, energy and water between the vegetated land surface and the atmosphere. We test an implementation of an optimal stomatal conductance model within the Community Atmosphere Biosphere Land Exchange (CABLE) land surface model (LSM). In common with many LSMs, CABLE does not differentiate between gs model parameters in relation to plant functional type (PFT), but instead only in relation to photosynthetic pathway. We constrained the key model parameter "g1", which represents plant water use strategy, by PFT, based on a global synthesis of stomatal behaviour. As proof of concept, we also demonstrate that the g1 parameter can be estimated using two long-term average (1960–1990) bioclimatic variables: (i) temperature and (ii) an indirect estimate of annual plant water availability. The new stomatal model, in conjunction with PFT parameterisations, resulted in a large reduction in annual fluxes of transpiration (~ 30% compared to the standard CABLE simulations) across evergreen needleleaf, tundra and C4 grass regions. Differences in other regions of the globe were typically small. Model performance against upscaled data products was not degraded, but did not noticeably reduce existing model–data biases. We identified assumptions relating to the coupling of the vegetation to the atmosphere and the parameterisation of the minimum stomatal conductance as areas requiring further investigation in both CABLE and potentially other LSMs. We conclude that optimisation theory can yield a simple and tractable approach to predicting stomatal conductance in LSMs.


Author(s):  
Luying Sun ◽  
Fengbin Song ◽  
Xiancan Zhu ◽  
Shengqun Liu ◽  
Fulai Liu ◽  
...  

2016 ◽  
Vol 24 (3) ◽  
pp. 493-500 ◽  
Author(s):  
Jonathan D.M. Helander ◽  
Aditya S. Vaidya ◽  
Sean R. Cutler

2016 ◽  
Vol 193 ◽  
pp. 110-118 ◽  
Author(s):  
Jhon F. Sandoval ◽  
Chan Yul Yoo ◽  
Michael J. Gosney ◽  
Michael V. Mickelbart

2017 ◽  
Vol 21 (2) ◽  
pp. 879-896 ◽  
Author(s):  
Tirthankar Roy ◽  
Hoshin V. Gupta ◽  
Aleix Serrat-Capdevila ◽  
Juan B. Valdes

Abstract. Daily, quasi-global (50° N–S and 180° W–E), satellite-based estimates of actual evapotranspiration at 0.25° spatial resolution have recently become available, generated by the Global Land Evaporation Amsterdam Model (GLEAM). We investigate the use of these data to improve the performance of a simple lumped catchment-scale hydrologic model driven by satellite-based precipitation estimates to generate streamflow simulations for a poorly gauged basin in Africa. In one approach, we use GLEAM to constrain the evapotranspiration estimates generated by the model, thereby modifying daily water balance and improving model performance. In an alternative approach, we instead change the structure of the model to improve its ability to simulate actual evapotranspiration (as estimated by GLEAM). Finally, we test whether the GLEAM product is able to further improve the performance of the structurally modified model. Results indicate that while both approaches can provide improved simulations of streamflow, the second approach also improves the simulation of actual evapotranspiration significantly, which substantiates the importance of making diagnostic structural improvements to hydrologic models whenever possible.


1974 ◽  
Vol 14 (1-2) ◽  
pp. 99-112 ◽  
Author(s):  
Richard W. Tinus

2008 ◽  
pp. 397-422 ◽  
Author(s):  
Ronald J. Ryel ◽  
Carolyn Y. Ivans ◽  
Michael S. Peek ◽  
A. Joshua Leffler

Sign in / Sign up

Export Citation Format

Share Document