Predictably Predictable -  The Role of Catchment Characteristics and Complexity.

Author(s):  
Sophia Eugeni ◽  
Eric Vaags ◽  
Steven V. Weijs

<p>Accurate hydrologic modelling is critical to effective water resource management. As catchment attributes strongly influence the hydrologic behaviors in an area, they can be used to inform hydrologic models to better predict the discharge in a basin. Some basins may be more difficult to accurately predict than others. The difficulty in predicting discharge may also be related to the complexity of the discharge signal. The study establishes the relationship between a catchment’s static attributes and hydrologic model performance in those catchments, and also investigates the link to complexity, which we quantify with measures of compressibility based in information theory. </p><p>The project analyzes a large national dataset, comprised of catchment attributes for basins across the United States, paired with established performance metrics for corresponding hydrologic models. Principal Component Analysis (PCA) was completed on the catchment attributes data to determine the strongest modes in the input. The basins were clustered according to their catchment attributes and the performance within the clusters was compared. </p><p>Significant differences in model performance emerged between the clusters of basins. For the complexity analysis, details of the implementation and technical challenges will be discussed, as well as preliminary results.</p>

Author(s):  
Adam Schreiner-McGraw ◽  
Hoori Ajami ◽  
Ray Anderson ◽  
Dong Wang

Accurate simulation of plant water use across agricultural ecosystems is essential for various applications, including precision agriculture, quantifying groundwater recharge, and optimizing irrigation rates. Previous approaches to integrating plant water use data into hydrologic models have relied on evapotranspiration (ET) observations. Recently, the flux variance similarity approach has been developed to partition ET to transpiration (T) and evaporation, providing an opportunity to use T data to parameterize models. To explore the value of T/ET data in improving hydrologic model performance, we examined multiple approaches to incorporate these observations for vegetation parameterization. We used ET observations from 5 eddy covariance towers located in the San Joaquin Valley, California, to parameterize orchard crops in an integrated land surface – groundwater model. We find that a simple approach of selecting the best parameter sets based on ET and T performance metrics works best at these study sites. Selecting parameters based on performance relative to observed ET creates an uncertainty of 27% relative to the observed value. When parameters are selected using both T and ET data, this uncertainty drops to 24%. Similarly, the uncertainty in potential groundwater recharge drops from 63% to 58% when parameters are selected with ET or T and ET data, respectively. Additionally, using crop type parameters results in similar levels of simulated ET as using site-specific parameters. Different irrigation schemes create high amounts of uncertainty and highlight the need for accurate estimates of irrigation when performing water budget studies.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1279
Author(s):  
Tyler Madsen ◽  
Kristie Franz ◽  
Terri Hogue

Demand for reliable estimates of streamflow has increased as society becomes more susceptible to climatic extremes such as droughts and flooding, especially at small scales where local population centers and infrastructure can be affected by rapidly occurring events. In the current study, the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) (NOAA/NWS, Silver Spring, MD, USA) was used to explore the accuracy of a distributed hydrologic model to simulate discharge at watershed scales ranging from 20 to 2500 km2. The model was calibrated and validated using observed discharge data at the basin outlets, and discharge at uncalibrated subbasin locations was evaluated. Two precipitation products with nominal spatial resolutions of 12.5 km and 4 km were tested to characterize the role of input resolution on the discharge simulations. In general, model performance decreased as basin size decreased. When sub-basin area was less than 250 km2 or 20–40% of the total watershed area, model performance dropped below the defined acceptable levels. Simulations forced with the lower resolution precipitation product had better model evaluation statistics; for example, the Nash–Sutcliffe efficiency (NSE) scores ranged from 0.50 to 0.67 for the verification period for basin outlets, compared to scores that ranged from 0.33 to 0.52 for the higher spatial resolution forcing.


2017 ◽  
Vol 21 (2) ◽  
pp. 879-896 ◽  
Author(s):  
Tirthankar Roy ◽  
Hoshin V. Gupta ◽  
Aleix Serrat-Capdevila ◽  
Juan B. Valdes

Abstract. Daily, quasi-global (50° N–S and 180° W–E), satellite-based estimates of actual evapotranspiration at 0.25° spatial resolution have recently become available, generated by the Global Land Evaporation Amsterdam Model (GLEAM). We investigate the use of these data to improve the performance of a simple lumped catchment-scale hydrologic model driven by satellite-based precipitation estimates to generate streamflow simulations for a poorly gauged basin in Africa. In one approach, we use GLEAM to constrain the evapotranspiration estimates generated by the model, thereby modifying daily water balance and improving model performance. In an alternative approach, we instead change the structure of the model to improve its ability to simulate actual evapotranspiration (as estimated by GLEAM). Finally, we test whether the GLEAM product is able to further improve the performance of the structurally modified model. Results indicate that while both approaches can provide improved simulations of streamflow, the second approach also improves the simulation of actual evapotranspiration significantly, which substantiates the importance of making diagnostic structural improvements to hydrologic models whenever possible.


2015 ◽  
Vol 19 (1) ◽  
pp. 209-223 ◽  
Author(s):  
A. J. Newman ◽  
M. P. Clark ◽  
K. Sampson ◽  
A. Wood ◽  
L. E. Hay ◽  
...  

Abstract. We present a community data set of daily forcing and hydrologic response data for 671 small- to medium-sized basins across the contiguous United States (median basin size of 336 km2) that spans a very wide range of hydroclimatic conditions. Area-averaged forcing data for the period 1980–2010 was generated for three basin spatial configurations – basin mean, hydrologic response units (HRUs) and elevation bands – by mapping daily, gridded meteorological data sets to the subbasin (Daymet) and basin polygons (Daymet, Maurer and NLDAS). Daily streamflow data was compiled from the United States Geological Survey National Water Information System. The focus of this paper is to (1) present the data set for community use and (2) provide a model performance benchmark using the coupled Snow-17 snow model and the Sacramento Soil Moisture Accounting Model, calibrated using the shuffled complex evolution global optimization routine. After optimization minimizing daily root mean squared error, 90% of the basins have Nash–Sutcliffe efficiency scores ≥0.55 for the calibration period and 34% ≥ 0.8. This benchmark provides a reference level of hydrologic model performance for a commonly used model and calibration system, and highlights some regional variations in model performance. For example, basins with a more pronounced seasonal cycle generally have a negative low flow bias, while basins with a smaller seasonal cycle have a positive low flow bias. Finally, we find that data points with extreme error (defined as individual days with a high fraction of total error) are more common in arid basins with limited snow and, for a given aridity, fewer extreme error days are present as the basin snow water equivalent increases.


2015 ◽  
Vol 16 (2) ◽  
pp. 762-780 ◽  
Author(s):  
Pablo A. Mendoza ◽  
Martyn P. Clark ◽  
Naoki Mizukami ◽  
Andrew J. Newman ◽  
Michael Barlage ◽  
...  

Abstract The assessment of climate change impacts on water resources involves several methodological decisions, including choices of global climate models (GCMs), emission scenarios, downscaling techniques, and hydrologic modeling approaches. Among these, hydrologic model structure selection and parameter calibration are particularly relevant and usually have a strong subjective component. The goal of this research is to improve understanding of the role of these decisions on the assessment of the effects of climate change on hydrologic processes. The study is conducted in three basins located in the Colorado headwaters region, using four different hydrologic model structures [PRMS, VIC, Noah LSM, and Noah LSM with multiparameterization options (Noah-MP)]. To better understand the role of parameter estimation, model performance and projected hydrologic changes (i.e., changes in the hydrology obtained from hydrologic models due to climate change) are compared before and after calibration with the University of Arizona shuffled complex evolution (SCE-UA) algorithm. Hydrologic changes are examined via a climate change scenario where the Community Climate System Model (CCSM) change signal is used to perturb the boundary conditions of the Weather Research and Forecasting (WRF) Model configured at 4-km resolution. Substantial intermodel differences (i.e., discrepancies between hydrologic models) in the portrayal of climate change impacts on water resources are demonstrated. Specifically, intermodel differences are larger than the mean signal from the CCSM–WRF climate scenario examined, even after the calibration process. Importantly, traditional single-objective calibration techniques aimed to reduce errors in runoff simulations do not necessarily improve intermodel agreement (i.e., same outputs from different hydrologic models) in projected changes of some hydrological processes such as evapotranspiration or snowpack.


2014 ◽  
Vol 11 (5) ◽  
pp. 5599-5631
Author(s):  
A. J. Newman ◽  
M. P. Clark ◽  
K. Sampson ◽  
A. Wood ◽  
L. E. Hay ◽  
...  

Abstract. We present a community dataset of daily forcing and hydrologic response data for 671 small- to medium-sized basins across the contiguous United States (median basin size of 336 km2) that spans a very wide range of hydroclimatic conditions. Areally averaged forcing data for the period 1980–2010 was generated for three basin delineations – basin mean, Hydrologic Response Units (HRUs) and elevation bands – by mapping the daily, 1 km gridded Daymet meteorological dataset to the sub-basin and basin polygons. Daily streamflow data was compiled from the United States Geological Survey National Water Information System. The focus of this paper is to (1) present the dataset for community use; and (2) provide a model performance benchmark using the coupled Snow-17 snow model and the Sacramento Soil Moisture Accounting conceptual hydrologic model, calibrated using the Shuffled Complex Evolution global optimization routine. After optimization minimizing daily root mean squared error, 90% of the basins have Nash–Sutcliffe Efficiency scores > 0.55 for the calibration period. This benchmark provides a reference level of hydrologic model performance for a commonly used model and calibration system, and highlights some regional variations in model performance. For example, basins with a more pronounced seasonal cycle generally have a negative low flow bias, while basins with a smaller seasonal cycle have a positive low flow bias. Finally, we find that data points with extreme error (defined as individual days with a high fraction of total error) are more common in arid basins with limited snow, and, for a given aridity, fewer extreme error days are present as basin snow water equivalent increases.


2011 ◽  
Vol 14 (2) ◽  
pp. 443-463 ◽  
Author(s):  
Saket Pande ◽  
Luis A. Bastidas ◽  
Sandjai Bhulai ◽  
Mac McKee

We provide analytical bounds on convergence rates for a class of hydrologic models and consequently derive a complexity measure based on the Vapnik–Chervonenkis (VC) generalization theory. The class of hydrologic models is a spatially explicit interconnected set of linear reservoirs with the aim of representing globally nonlinear hydrologic behavior by locally linear models. Here, by convergence rate, we mean convergence of the empirical risk to the expected risk. The derived measure of complexity measures a model's propensity to overfit data. We explore how data finiteness can affect model selection for this class of hydrologic model and provide theoretical results on how model performance on a finite sample converges to its expected performance as data size approaches infinity. These bounds can then be used for model selection, as the bounds provide a tradeoff between model complexity and model performance on finite data. The convergence bounds for the considered hydrologic models depend on the magnitude of their parameters, which are the recession parameters of constituting linear reservoirs. Further, the complexity of hydrologic models not only varies with the magnitude of their parameters but also depends on the network structure of the models (in terms of the spatial heterogeneity of parameters and the nature of hydrologic connectivity).


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2312
Author(s):  
Joseph A. Daraio

Hydrologic models driven by downscaled meteorologic data from general circulation models (GCM) should be evaluated using long-term simulations over a historical period. However, simulations driven by GCM data cannot be directly evaluated using observed flows, and the confidence in the results can be relatively low. The objectives of this paper were to bias correct simulated stream flows from calibrated hydrologic models for two basins in New Jersey, USA, and evaluate model performance in comparison to uncorrected simulations. Then, we used stream flow bias correction and flow duration curves (FDCs) to evaluate and assess simulations driven by statistically downscaled GCMs for the historical period and the future time slices 2041–2070 and 2071–2099. Bias correction of stream flow from simulations increased confidence in the performance of two previously calibrated hydrologic models. Results indicated there was no difference in projected FDCs for uncorrected and bias-corrected flows in one basin, while this was not the case in the second basin. This result provided greater confidence in projected stream flow changes in the former basin and implied more uncertainty in projected stream flows in the latter. Applications in water resources can use the methods described to evaluate the performance of GCM-driven simulations and assess the potential impacts of climate change with an appropriate level of confidence in the model results.


2017 ◽  
Author(s):  
Karthik Kumarasamy ◽  
Patrick Belmont

Abstract. Watershed scale models simulating hydrology and water quality have advanced rapidly in sophistication, process representation, flexibility in model structure, and input data. Given the importance of these models to support decision-making for a wide range of environmental issues, the hydrology community is compelled to improve the metrics used to evaluate model performance. More targeted and comprehensive metrics will facilitate better and more efficient calibration and will help demonstrate that the model is useful for the intended purpose. Here we introduce a suite of new tools for model evaluation, packaged as an open-source Hydrologic Model Evaluation (HydroME) Toolbox. Specifically, we demonstrate the use of box plots to illustrate the full distribution of common model performance metrics, such as R2, use of Euclidian distance, empirical Quantile-Quantile (Q-Q) plots and flow duration curves as simple metrics to identify and localize errors in model simulations. Further, we demonstrate the use of magnitude squared coherence to compare the frequency content between observed and modeled streamflow and wavelet coherence to localize frequency mismatches in time. We provide a rationale for a hierarchical selection of parameters to adjust during calibration and recommend that modelers progress from parameters with the most uncertainty to the least uncertainty, namely starting with pure calibration parameters, followed by derived parameters, and finally measured parameters. We apply these techniques in the calibration and evaluation of models of two watersheds, the Le Sueur River Basin (2880 km2) and Root River Basin (4300 km2) in southern Minnesota, USA.


Sign in / Sign up

Export Citation Format

Share Document