scholarly journals On the Nature of Exotic Matter in Morris-Thorne Wormholes

2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Peter K F Kuhfittig ◽  

It is well known that phantom energy, which is characterized by the equation of state p = ωρ, ω < −1, can support Morris-Thorne wormholes since it leads to a violation of the null energy condition. The purpose of this note is to show that the converse is also true in the following sense: for a typical shape function, the equation of state of exotic matter in the vicinity of the throat is given by p↓r = ωρ, ω < −1, where pr is the radial pressure.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ouziala Ikram ◽  
G. Mustafa

In this recent study, we shall investigate the wormhole models with a Hu–Sawicki model in the framework of f ℛ gravity. Spherically static symmetric space-time is considered to construct wormhole models with the anisotropic fluid distribution. The traceless matter is discussed by imposing a particular equation of state. To address the important conditions of the shape function of the wormhole geometry, we have used the particular values of the involved parameters. Furthermore, different energy conditions are discussed to check the nature of matter against two specific models. The null energy condition is observed to be violated for both of the models. It is mentioned that our inquired results are acceptable.


2020 ◽  
Vol 17 (10) ◽  
pp. 2050146
Author(s):  
G. Mustafa ◽  
Tie-Cheng Xia

In this paper, we examine the wormhole solutions by taking two different anisotropic models in Rastall gravity. For this purpose, we shall discuss anisotropic fluid to construct two different anisotropic models. Further, we shall employ two specific shape functions to calculate the behavior of energy conditions. The presence of exotic matter is confirmed in all the cases of this study due to the violation of the null energy condition. All the properties of shape function under both anisotropic models are fulfilled. It is noticed that wormhole solutions exist under the particular values of involved parameters in different cases in Rastall gravity.


2019 ◽  
Vol 34 (01) ◽  
pp. 1950010 ◽  
Author(s):  
Farook Rahaman ◽  
Susmita Sarkar ◽  
Ksh. Newton Singh ◽  
Neeraj Pant

It is known that wormhole geometry could be found solving the Einstein field equations by tolerating the violation of null energy condition (NEC). Violation of NEC is not possible for the physical matter distributions, however, it can be achieved by considering distributions of “exotic matter”. The main purpose of this work is to find generating functions comprising the wormhole-like geometry and discuss the nature of these generating functions. We have used the Herrera et al. [Phys. Rev. D 77, 027502 (2008)] approaches of obtaining generating functions in the background of wormhole spacetime. Here we have adopted two approaches for solving the field equations to find wormhole geometry. In the first method, we have assumed the redshift function f(r) and the shape function b(r) and solve for the generating functions. In another attempt, we assume generating functions and redshift functions and then try to find shape functions of the wormholes.


2009 ◽  
Vol 18 (02) ◽  
pp. 329-345 ◽  
Author(s):  
S. K. SRIVASTAVA ◽  
J. DUTTA

In this paper, the RS-II model of brane gravity is considered for the phantom universe using a nonlinear equation of state. Phantom fluid is known to violate the weak energy condition. It is found that this characteristic of phantom energy is affected drastically by the negative brane tension λ of the RS-II model. It is interesting to see that up to a certain value of energy density ρ satisfying ρ/λ < 1, the weak energy condition is violated and the universe superaccelerates. But, as ρ increases more, only the strong energy condition is violated and the universe accelerates. When 1 < ρ/λ < 2, even the strong energy condition is not violated and the universe decelerates. Expansion of the universe stops when ρ = 2 λ. This is contrary to earlier results of the phantom universe exhibiting acceleration only.


Author(s):  
Susmita Sarkar ◽  
Nayan Sarkar ◽  
Farook Rahaman

AbstractThe present work looks for the existence of completely new wormhole geometries in the bulge of the Milky Way galaxy (MWG) situated on the dark matter (DM) density profile followed from MacMillan (MNRAS 76:465, 2017) and Boshkayev and Malafarina (MNRAS 484:3325, 2019) concerned with Global Monopole Charge. The obtained shape function is positively increasing against the radial coordinate and it increases faster with the increasing values of Global Monopole Charge. Moreover, the reported shape function satisfies all the essential criterions and hence it constructs wormhole geometry in the bulge of the MWG. Further, the DM candidate around bulge is suitable to harbor wormhole by violating the null energy condition(NEC) corresponding to three different redshift functions. The striking point of our solution is that for zero Global Monopole Charge the wormholes are asymptotically flat corresponding to the first two choices of redshift functions while for positive values of Global Monopole Charge wormhole becomes non asymptotically flat and Global Monopole Charge also has the crucial effect on the violation of NEC. In our solutions, one can note that the total amount of averaged NEC violating matter in the wormhole spacetime depends on the Global Monopole Charge $$\eta $$ η . Furthermore, the respective wormhole solutions are in equilibrium positions.


Author(s):  
Dan Wang ◽  
G. Mustafa

In this paper, we examine the embedded wormhole solutions in the modified [Formula: see text] theory of gravity, where [Formula: see text] denotes the trace of the energy–momentum tensor and [Formula: see text] is the Ricci scalar. We derive the embedded class-1 solutions by considering spherically symmetric static spacetime. The shape function is calculated in the framework of embedded class-1 spacetime. It is necessary to mention here that the calculated shape function can be used in other modified theories of gravity. We explore the feasible solutions for the specific model of [Formula: see text] theory of gravity. Energy conditions have been explored using the approach mentioned above. Conclusively, we find that obtained wormhole solutions are acceptable, as the null energy condition is violated in the specific region.


2011 ◽  
Vol 26 (40) ◽  
pp. 3067-3076 ◽  
Author(s):  
NADIEZHDA MONTELONGO GARCIA ◽  
FRANCISCO S. N. LOBO

A fundamental ingredient in wormhole physics is the presence of exotic matter, which involves the violation of the null energy condition. Although a plethora of wormhole solutions have been explored in the literature, it is useful to find geometries that minimize the usage of exotic matter. In this work, we find exact wormhole solutions in Brans–Dicke theory where the normal matter threading the wormhole satisfies the null energy condition throughout the geometry. Thus, the latter implies that it is the effective stress–energy tensor containing the scalar field, that plays the role of exotic matter, that is responsible for sustaining the wormhole geometry. More specifically, we consider a zero redshift function and a particular choice for the scalar field and determine the remaining quantities, namely, the stress–energy tensor components and the shape function. The solution found is not asymptotically flat, so that this interior wormhole spacetime needs to be matched to an exterior vacuum solution.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Oleksii Sokoliuk ◽  
Alexander Baransky

AbstractWe study Morris–Thorne static traversable wormhole solutions in different modified theories of gravity. We focus our study on the quadratic gravity $$f({\mathscr {R}}) = {\mathscr {R}}+a{\mathscr {R}}^2$$ f ( R ) = R + a R 2 , power-law $$f({\mathscr {R}}) = f_0{\mathscr {R}}^n$$ f ( R ) = f 0 R n , log-corrected $$f({\mathscr {R}})={\mathscr {R}}+\alpha {\mathscr {R}}^2+\beta {\mathscr {R}}^2\ln \beta {\mathscr {R}}$$ f ( R ) = R + α R 2 + β R 2 ln β R theories, and finally on the exponential hybrid metric-Palatini gravity $$f(\mathscr {\hat{R}})=\zeta \bigg (1+e^{-\frac{\hat{{\mathscr {R}}}}{\varPhi }}\bigg )$$ f ( R ^ ) = ζ ( 1 + e - R ^ Φ ) . Wormhole fluid near the throat is adopted to be anisotropic, and redshift factor to have a constant value. We solve numerically the Einstein field equations and we derive the suitable shape function for each MOG of our consideration by applying the equation of state $$p_t=\omega \rho $$ p t = ω ρ . Furthermore, we investigate the null energy condition, the weak energy condition, and the strong energy condition with the suitable shape function b(r). The stability of Morris–Thorne traversable wormholes in different modified gravity theories is also analyzed in our paper with a modified Tolman–Oppenheimer–Voklov equation. Besides, we have derived general formulas for the extra force that is present in MTOV due to the non-conserved stress-energy tensor.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Ignatios Antoniadis ◽  
Spiros Cotsakis ◽  
Ifigeneia Klaoudatou

AbstractWe construct a regular five-dimensional brane-world with localised gravity on a flat 3-brane. The matter content in the bulk is parametrised by an analog of a non-linear fluid with equation of state $$p=\gamma \rho ^\lambda $$ p = γ ρ λ between the ‘pressure’ p and the ‘density’ $$\rho $$ ρ dependent on the 5th dimension. For $$\gamma $$ γ negative and $$\lambda >1$$ λ > 1 , the null energy condition is satisfied and the geometry is free of singularities within finite distance from the brane, while the induced four-dimensional Planck mass is finite.


2019 ◽  
Vol 28 (02) ◽  
pp. 1950039 ◽  
Author(s):  
Nisha Godani ◽  
Gauranga C. Samanta

Traversable wormholes, tunnel-like structures introduced by Morris and Thorne [Am. J. Phys. 56 (1988) 395], have a significant role in connection of two different spacetimes or two different parts of the same spacetime. The characteristics of these wormholes depend upon the redshift and shape functions which are defined in terms of radial coordinate. In literature, several shape functions are defined and wormholes are studied in [Formula: see text] gravity with respect to these shape functions [F. S. N. Lobo and M. A. Oliveira, Phys. Rev. D 80 (2009) 104012; H. Saiedi and B. N. Esfahani, Mod. Phys. Lett. A 26 (2011) 1211; S. Bahamonde, M. Jamil, P. Pavlovic and M. Sossich, Phys. Rev. D 94 (2016) 044041]. In this paper, two shape functions (i) [Formula: see text] and (ii) [Formula: see text], [Formula: see text], are considered. The first shape function is newly defined, however, the second one is collected from the literature [M. Cataldo, L. Liempi and P. Rodríguez, Eur. Phys. J. C 77 (2017) 748]. The wormholes are investigated for each type of shape function in [Formula: see text] gravity with [Formula: see text], where [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] are real constants. Varying the parameter [Formula: see text] or [Formula: see text], [Formula: see text] model is studied in five subcases for each type of shape function. In each case, the energy density, radial and tangential pressures, energy conditions that include null energy condition, weak energy condition, strong energy condition and dominated energy condition and anisotropic parameter are computed. The energy density is found to be positive and all energy conditions are obtained to be violated which support the existence of wormholes. Also, the equation-of-state parameter is obtained to possess values less than [Formula: see text], that shows the presence of the phantom fluid and leads toward the expansion of the universe.


Sign in / Sign up

Export Citation Format

Share Document