scholarly journals Modified solid ion-selective electrode for potentiometric determination of sulfide in oil refineries water

2021 ◽  
Vol 30 (1) ◽  
pp. 98-105
Author(s):  
Zeyad Abdullad ◽  
Shatha Al-Samarrai

A selective electrode was manufactured to determine the sulfur ions by sedimentation method in industrial waters in oil refineries of North Refineries Company, Baiji, Iraq. The linear response on a wide range of concentration (from 1.0·10–1 to 1.0·10–6M) Na2S with a Nernst response of 28.229 mv per decade, theoretical value for slope of 29.58 mv per decade, correlation factor of 0.9998, detection limit of 2.287·10–7 at 25–35°C, pH 6.0–12.0, and the best concentration of the filling solution of 10–6M with a fast response time (5–13 s). The direct method were %RSD for 0.5772– –0.7430, %RE for –0.1, 3.7 and %REC for 99.9, 103.7.

2021 ◽  
Vol 7 (3) ◽  
pp. 742-748
Author(s):  
A. Zaki Gehan ◽  
M.E. Hassouna Mohammed

In this present work, a prednisolone ion selective electrode (PRED-ISE) has been developed. The electrode shows linear response towards prednisolone in the range 3.0×10−6 – 8.6×10−3 M with a detection limit of 2.5×10−6. PRED-ISE was used as an indicator electrode for the potentiometric titration of different concentrations of standard prednisolone against standardized sodium tetraphenyl borate solution and in tablets. The electrode manifests advantages of low resistance, fast response and, most importantly, good selective relativity to a variety of other cations.


2008 ◽  
Vol 6 (4) ◽  
pp. 607-612 ◽  
Author(s):  
Cecylia Wardak

AbstractA new all plastic sensor for Co2+ ions based on 2-amino-5 (hydroxynaphtyloazo-1′)-1,3,4 thiadiazole (ATIDAN) as ionophore was prepared. The electrode exhibits a low detection limit of 1.5 × 10−6 mol L−1 and almost theoretical Nernstian slope in the activity range 4.0 × 10−6–1 × 10−1 mol L−1 of cobalt ions. The response time of the sensor is less than 10 s and it can be used over a period of 6 months without any measurable divergence in potential. The proposed sensor shows a fairly good selectivity for Co(II) over other metal ions. The electrode was successfully applied for determination of Co2+ in real samples and as an indicator electrode in potentiometric titration of Co2+ ions with EDTA.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 37
Author(s):  
Mayra K. S. Monteiro ◽  
Djalma R. Da Silva ◽  
Marco A. Quiroz ◽  
Vítor J. P. Vilar ◽  
Carlos A. Martínez-Huitle ◽  
...  

This study aims to investigate the applicability of a hybrid electrochemical sensor composed of cork and graphite (Gr) for detecting caffeine in aqueous solutions. Raw cork (RAC) and regranulated cork (RGC, obtained by thermal treatment of RAC with steam at 380 °C) were tested as modifiers. The results clearly showed that the cork-graphite sensors, GrRAC and GrRGC, exhibited a linear response over a wide range of caffeine concentration (5–1000 µM), with R2 of 0.99 and 0.98, respectively. The limits of detection (LOD), estimated at 2.9 and 6.1 µM for GrRAC and GrRGC, suggest greater sensitivity and reproducibility than the unmodified conventional graphite sensor. The low-cost cork-graphite sensors were successfully applied in the determination of caffeine in soft drinks and pharmaceutical formulations, presenting well-defined current signals when analyzing real samples. When comparing electrochemical determinations and high performance liquid chromatography measurements, no significant differences were observed (mean accuracy 3.0%), highlighting the potential use of these sensors to determine caffeine in different samples.


2015 ◽  
Vol 80 (9) ◽  
pp. 1161-1175 ◽  
Author(s):  
Bikila Olana ◽  
Shimeles Kitte ◽  
Tesfaye Soreta

In this work the determination of ascorbic acid (AA) at glassy carbon electrode (GCE) modified with a perforated film produced by reduction of diazonium generated in situ from p-phenylenediamine (PD) is reported. Holes were intentionally created in the modifier film by stripping a pre-deposited gold nanoparticles. The modified electrodes were electrochemically characterized by common redox probes: hydroquinone, ferrocyanide and hexamineruthenium(III). The cyclic voltammetric and amperometric response of AA using the modified electrodes was compared with that of bare GCE. The bare GCE showed a linear response to AA in the concentration range of 5 mM to 45 mM with detection limit of 1.656 mM and the modified GCE showed a linear response to AA in the concentration range of 5 ?M to 45 ?M with detection limit of 0.123 ?M. The effect of potential intereferents on amperometric signal of AA at the modified GCE was examined and found to be minimal. The inter-electrode reproducibility, stability, and accuracy were determined. The modified electrode showed excellent inter-electrode reproducibility, accuracy and stability. The modified electrode reported is a promising candidate for use in electroanalysis of AA.


2010 ◽  
Vol 7 (3) ◽  
pp. 284-287
Author(s):  
Ani Mulyasuryani ◽  
Qonitah Fardiyah ◽  
Rizki Sugiri

The iodate-selective electrode based on the principle of precipitation reaction could be made by coating the platinum wire with silver iodate (AgIO3). In this research was carried out optimization the iodate-selective electrode using chitosan membrane as an AgIO3 support. The AgIO3 were added in the 2 mL 1% chitosan solution, is 0.5 to 2.5 % (w/v). The thickness of the membrane used is 6 to 12 µm. The electrode cell potential is measured against Ag/AgCl electrode as a reference electrode. The optimum electrode performance was at 2.0 % of AgIO3 with thickness a membrane of 10 µm. The iodate-selective electrode has a Nernstian factor is 52.96 mV/decade and a response time of 10 seconds. The concentration range was determined from 10-3 M to 10-1 M and the detection limit is 1.12 x 10-5 M.   Keywords:  Ion Selective Electrode, Iodate, Chitosan Membrane


2015 ◽  
Vol 12 (1) ◽  
pp. 188-196
Author(s):  
Baghdad Science Journal

A new method for construction ion-selective electrode (ISE) by heating reaction of methyl orange with ammonium reineckate using PVC as plasticizer for determination methyl orange and determination Amitriptyline Hydrochloried drug by formation ion-pair on electrode surface . The characteristics of the electrode and it response as following : internal solution 10-4M , pH (2.5-5) ,temperature (20-30) and response time 2 sec. Calibration response for methyl orange over the concentrationrange 10-3 -10-9 M with R=0.9989 , RSD%=0.1052, D.O.L=0.315X10-9 MEre%=(-0.877- -2.76) , Rec%.=(97.230 -101.711) .


2012 ◽  
Vol 490-495 ◽  
pp. 1231-1236 ◽  
Author(s):  
Tran Van Hung ◽  
Chuan He Huang

MMDB cluster system is a memory optimized relation database that implements on cluster computing platform, provides applications with extremely fast response time and very high throughput as required by many applications in a wide range of industries. Here, a new dynamic fragment allocation algorithm (DFAPR) in Partially Replicated allocation scenario is proposed. This algorithm reallocates data with respect to changing data access pattern for each fragment in which data is maintained in current site, migrated or created new replicas on remote sites depend on accessing frequency and average response time. At last, the simulation results show that the DFAPR is suitable for MMDB cluster because it provides a better response time and maximize the locality of processing so it could be developed parallel processing of MMDB in cluster environment.


2020 ◽  
Vol 44 (41) ◽  
pp. 17849-17853
Author(s):  
Yanxia Qiao ◽  
Rui Zhang ◽  
Fangyuan He ◽  
Wenli Hu ◽  
Xiaowei Cao ◽  
...  

A glucose sensor based on conductive Ni-MOF nanosheet arrays/CC exhibits a fast response time, a low detection limit, a high sensitivity, and it can also be applied for the detection of glucose in human serum samples.


2006 ◽  
Vol 45 ◽  
pp. 1828-1833
Author(s):  
Fabio A. Deorsola ◽  
P. Mossino ◽  
Ignazio Amato ◽  
Bruno DeBenedetti ◽  
A. Bonavita ◽  
...  

Nanostructured semiconductor metal oxides have played a central role in the gas sensing research field, because of their high sensitivity, selectivity and low response time. Among all the processes, developed for the synthesis of nanostructured metal oxides, gel combustion seems to be the most promising route due to low-cost precursors and simplicity of the process. It combines chemical gelation and combustion, involving the formation of a gel from an acqueous solution and an exothermic redox reaction, yielding to very porous and softly agglomerated nanopowders. In this work, nanostructured tin oxide, SnO2, and titanium oxide, TiO2, have been synthesized through gel combustion. Powders showed nanometric particle size and high specific surface area. The so-obtained TiO2 and SnO2 nanopowders have been used as sensitive element of resistive λ sensor and ethanol sensor respectively, realized depositing films of nanopowders dispersed in water onto alumina substrates provided with Pt contacts and heater. TiO2-based sensors showed at high temperature good response, fast response time, linearity in a wide range of O2 concentration and long-term stability. SnO2-based sensors have shown high sensitivity to low concentrations of ethanol at moderate temperature.


RSC Advances ◽  
2016 ◽  
Vol 6 (81) ◽  
pp. 77854-77862 ◽  
Author(s):  
Zeinab F. Akl ◽  
Tamer Awad Ali

Potentiometric screen-printed electrodes were constructed for Th(iv) determination in water samples. The optimized electrodes exhibited fast response time, wide linear range, low detection limit and high selectivity towards Th(iv) ions.


Sign in / Sign up

Export Citation Format

Share Document