A comparative study of electrocatalytic oxidation of glucose on conductive Ni-MOF nanosheet arrays with different ligands

2020 ◽  
Vol 44 (41) ◽  
pp. 17849-17853
Author(s):  
Yanxia Qiao ◽  
Rui Zhang ◽  
Fangyuan He ◽  
Wenli Hu ◽  
Xiaowei Cao ◽  
...  

A glucose sensor based on conductive Ni-MOF nanosheet arrays/CC exhibits a fast response time, a low detection limit, a high sensitivity, and it can also be applied for the detection of glucose in human serum samples.

2020 ◽  
Vol 8 (25) ◽  
pp. 5411-5415 ◽  
Author(s):  
Yanxia Qiao ◽  
Qian Liu ◽  
Siyu Lu ◽  
Guang Chen ◽  
Shuyan Gao ◽  
...  

A glucose sensor based on a conductive Ni-MOF as an electrocatalyst exhibits a fast response time, low detection limit, and high sensitivity, and it can also be applied for the detection of glucose in blood serum samples.


2014 ◽  
Vol 2 (20) ◽  
pp. 7306-7312 ◽  
Author(s):  
Chuncai Kong ◽  
Linli Tang ◽  
Xiaozhe Zhang ◽  
Shaodong Sun ◽  
Shengchun Yang ◽  
...  

In this paper, we successfully fabricated a novel type of a hollow CuO polyhedron that consists of numerous nanoplates using Cu2O as a template. The hollow CuO polyhedron-modified electrode exhibits high sensitivity, low detection limit, good stability and fast response towards the oxidation of glucose, suggesting it to be a promising nonenzymatic glucose sensor.


2020 ◽  
Vol 20 (5) ◽  
pp. 3246-3251 ◽  
Author(s):  
Hai-Long Hu ◽  
Chuan He ◽  
Bao-Gang Guo ◽  
He-Yan Huang ◽  
Xing-Quan Zhang ◽  
...  

Developing new advanced nonenzymatic electrochemical nano-sensors for glucose detection has attracted intensive attraction. In this work, we designed a novel nanocomposite nonenzymatic glucose sensor by fabricating hierarchically nanostructured metal nickel on titania nanowire arrays, which was loaded on a transparent conductive substrate (i.e., fluorine-doped tin oxide, FTO) surface by mild hydrothermal method. Due to the large surface area of the hierarchically nanostructured Ni and fast electron transfer of the TiO2 nanowire arrays electrode, the nanocomposite electrode shows excellent electrochemical activity toward the oxidation of glucose. The electrode exhibits high sensitivity in detecting glucose concentration (1472 μA mM−1 cm−2) with a wide linear range from 2×10−4 M to 2×10−3 M, fast response time (within 5 s), and small detection limit (10 μM) (S/N = 3). The good analytical performance, low cost and simple preparation method make this novel electrode material promising for the development of effective glucose nonenzymatic glucose sensor.


2013 ◽  
Vol 726-731 ◽  
pp. 13-16
Author(s):  
Ying Zhang ◽  
Cai Na Su ◽  
Wang Ren

We reported a facile one-step electrochemical method to synthesize compositesof polydopamine (PDA) and Pt nanoparticles (PtNs) at the glassy carbon electrode (GCE). The electrochemical behavior of the obtained platform towards electrocatalytic oxidation of glucose in alkaline solution was investigated by cyclic voltammetry (CV). The response current of the resultant sensor is linear to glucose concentration in the range of 0.1- 30.0 mM with a low detection limit of 1.0 μM (S/N=3). The proposed sensor with excellent sensitivity and selectivity also allows for detection of glucose in human serum samples.


2013 ◽  
Vol 823 ◽  
pp. 291-295 ◽  
Author(s):  
Shou Chen Chai ◽  
Peng Yang ◽  
Cheng Jia Yang ◽  
Chun Li Cai ◽  
Na Yu

In the space restricted airtight environment that people lives in, detecting harmful gas by miniature gas chromatography is the practical requirement at present, however, PIDs performance is key factor that restrict the application of miniature gas chromatography, the redesign of the detectors gas route in this paper aiming at improve detectors stability observably, and schemed out miniature PID with high sensitivity, low detection limit and fast response. The result of the experiment shows that the detection limit is 0.04ppm, the sensitivity is 101mv/ppm,the stability is 0.04×10-6/24h,meeting the project requirement. Keywords: photoionization detector; ionization chamber; sensitivity; detection limit;


2019 ◽  
Vol 7 (44) ◽  
pp. 7033-7041 ◽  
Author(s):  
Sansan Shen ◽  
Bohui Huang ◽  
Xiaofeng Guo ◽  
Hong Wang

An on–off–on fluorescent sensor based on N-SiQD has the advantages of fast response time and high sensitivity to Hg2+ and GSH.


NANO ◽  
2019 ◽  
Vol 14 (04) ◽  
pp. 1950045
Author(s):  
Fang Sun ◽  
Lehong Xing ◽  
Xihui Yang ◽  
Hailiang Huang ◽  
Lina Ning

In this study, CuO films with hollow cubic cages were prepared by a facile two-step procedure consisting of electrodeposition synthesis and subsequent direct calcination. First, Cu2O nanocubes were fabricated on ITO substrate through a simple electrodeposition procedure. Then, Cu2O nanocubes were converted to CuO hollow cubic cages without obvious morphological change through direct calcination. The obtained CuO cubic cages serving as active materials illustrated a favorable performance for nonenzymatic glucose sensing with high sensitivity of [Formula: see text]A[Formula: see text]mM[Formula: see text][Formula: see text]cm[Formula: see text] at a low applied potential of 0.50[Formula: see text]V, fast-response time (less than 3[Formula: see text]s), low detection limit of 1.0[Formula: see text][Formula: see text]M and wide linear range up from 2.0[Formula: see text][Formula: see text]M to 1.0[Formula: see text]mM ([Formula: see text]). Moreover, the good selectivity of the CuO cubic cages-based nonenzymatic glucose sensor against electroactive compounds such as ascorbic acid, uric acid and dopamine were also demonstrated. These good features indicate that the as-prepared CuO cubic cages can be used as promising electrode materials, which have a great potential in the development of sensitive and selective nonenzymatic glucose sensors.


2006 ◽  
Vol 45 ◽  
pp. 1828-1833
Author(s):  
Fabio A. Deorsola ◽  
P. Mossino ◽  
Ignazio Amato ◽  
Bruno DeBenedetti ◽  
A. Bonavita ◽  
...  

Nanostructured semiconductor metal oxides have played a central role in the gas sensing research field, because of their high sensitivity, selectivity and low response time. Among all the processes, developed for the synthesis of nanostructured metal oxides, gel combustion seems to be the most promising route due to low-cost precursors and simplicity of the process. It combines chemical gelation and combustion, involving the formation of a gel from an acqueous solution and an exothermic redox reaction, yielding to very porous and softly agglomerated nanopowders. In this work, nanostructured tin oxide, SnO2, and titanium oxide, TiO2, have been synthesized through gel combustion. Powders showed nanometric particle size and high specific surface area. The so-obtained TiO2 and SnO2 nanopowders have been used as sensitive element of resistive λ sensor and ethanol sensor respectively, realized depositing films of nanopowders dispersed in water onto alumina substrates provided with Pt contacts and heater. TiO2-based sensors showed at high temperature good response, fast response time, linearity in a wide range of O2 concentration and long-term stability. SnO2-based sensors have shown high sensitivity to low concentrations of ethanol at moderate temperature.


RSC Advances ◽  
2016 ◽  
Vol 6 (81) ◽  
pp. 77854-77862 ◽  
Author(s):  
Zeinab F. Akl ◽  
Tamer Awad Ali

Potentiometric screen-printed electrodes were constructed for Th(iv) determination in water samples. The optimized electrodes exhibited fast response time, wide linear range, low detection limit and high selectivity towards Th(iv) ions.


RSC Advances ◽  
2016 ◽  
Vol 6 (43) ◽  
pp. 37085-37092 ◽  
Author(s):  
Ying Yang ◽  
Li Sun ◽  
Xiangting Dong ◽  
Hui Yu ◽  
Tingting Wang ◽  
...  

Fe3O4nanoparticles-decorated reduced graphene oxide nanocomposites have been successfully synthesized using solvothermal-pyrolytic method. They have superior gas sensing performance with low detection limit, high sensitivity and short response time.


Sign in / Sign up

Export Citation Format

Share Document