scholarly journals Relation between CO2 emissions and crude oil combustion in Iraq

2021 ◽  
Vol 30 (3) ◽  
pp. 379-387
Author(s):  
Ahmed Hassan ◽  
Hasan Azeez

Fossil fuel is the main source for CO2 emissions that causes global warming. This fact is the starting point for this paper, that consider on three different sources of data: crude oil used to calculate CO2 emissions for Iraq for the period from 1980 to 2018; annual data of total CO2 emissions available from the Carbon Dioxide Information Analysis Center (CDIAC) for Iraq and the world for the period from 1980 to 2014; and CO2 concentrations for Iraq for the period from 2002 to 2006 and for the world for the period from 1980 to 2018. The result is a multifaceted according to the dataset sources. Carbon dioxide emissions calculated from Iraqi crude oil was increased from 1.29 Mt in 2012 to 1.97 Mt in 2018. The world and Iraq CO2 emissions with different slop of average line that was 0.5 for world, 0.003 for Iraq, while increased exponential function from 2008 to 2014 to reach 36 and 0.17 Mt, respectively. The highest value of Iraqi CO2 concentration was 403 ppm in 2016, while the global CO2 concentrations slowly increased with slop line equal to 1.75 ppm per year, from minimum value of 338.6 ppm was in 1980, while maximum value of 407.05 ppm was in 2018, that’s mean no decreased in CO2 concentration unless emissions addressed.

2021 ◽  
Vol 32 (2) ◽  
pp. 47
Author(s):  
Ahmed S. Hassan ◽  
Jasim H. Kadhum

Carbon dioxide intensity (CI) refers to carbon dioxide emissions from fossil fuel combustion that mainly used for electricity, heat, transport, and other life requirements. The objective of this paper is better to understand CI as an indicator of Global Warming, and compared its behavior with two other variables (total CO2 emissions, and CO2 emissions per capita). The main data sources an available and activity data from Carbon Dioxide Information Analysis Center (CDIAC). Three annual variables used in this study; CI, total CO2 emissions, and CO2 per capita for fossil fuel emissions during long time series from (1971 to 2018).The results of CI shown that the highest value found out at the beginning of the study in 1971 was (7.188 kg/kg oil equivalent), and then decreased till reach to lower value was (1.707 kg/kg oil equivalent) in 1997, after that slowly increased in the last decade near to (3.63 kg/kg oil equivalent). The total CO2 emissions were strongly related to oil prediction. The highest value for total CO2 emissions was (188.1 Mt) in 2018, with Iraqi oil production more than (4.78 million barrel/day). The total CO2 emissions increased by (65. 176%) during the study period.  The total CO2 emissions were inversely proportional to CI.  The level of CO2 emission per capita rate fluctuated around average (3.49 metric tons per capita); the maximum rate was (4.99 metric tons per capita) in 2013.         


Climate ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 61
Author(s):  
John P. O’Connor

In this work, a semi-empirical relationship of carbon dioxide emissions with atmospheric CO2 concentrations has been developed that is capable of closely replicating observations from 1751 to 2018. The analysis was completed using data from fossil-fuel-based and land-use change based CO2 emissions, both singly and together. Evaluation of emissions data from 1750 to 1890 yields a linear CO2 concentration component that may be attributed to the net flux from land-use changes combined with a rapidly varying component of the terrestrial sink. This linear component is then coupled across the full-time period with a CO2 concentration calculation using fossil-fuel combustion/cement production emissions with a single, fixed fossil-fuel combustion airborne fraction [AFFF] value that is determined by the ocean sink coupled with the remaining slowly varying component of the land sink. The analysis of the data shows that AFFF has remained constant at 51.3% over the past 268 years. However, considering the broad range of variables including emission and sink processes influencing the climate, it may not be expected that a single value for AFFF would accurately reproduce the measured changes in CO2 concentrations during the industrial era.


2021 ◽  
Vol 3 (4(59)) ◽  
pp. 46-50
Author(s):  
Serhii Voitko ◽  
Tetiana Mazanko

The object of research is the processes of reducing economic activity in Ukraine and the world during COVID-restrictions, reducing the amount of carbon dioxide emissions in 2020 compared to 2019 by country and in various sectors of the economy. The most topical researches and publications in which the given questions are covered are analyzed. Based on statistical data, the paper shows a slight decline in Ukraine's GDP in 2020. Based on the consideration of the negative impact of quarantine restrictions, it was noted that the type of economic activity (EA) such as passenger transport suffered the most. At the same time, as the production of foreign trade, the performance of retail trade and construction has improved its dynamics. Elsewhere in the world, there has also been a slight economic downturn, while China has been able to maintain a slight increase in GDP. For 2021, there is a positive outlook for economic growth. The introduction of lockdowns and quarantine restrictions has led to a simultaneous reduction in CO2 emissions worldwide and reduced the negative impact on the environment. Thanks to the data of carbon dioxide emissions monitoring, it is possible to see a significant reduction in emissions since the beginning of COVID-restrictions in 2020. At the end of the year, the level of emissions reached almost the same level as before the restrictions, but the total volume for the year decreased significantly. If to look at the sectors, the largest amount of carbon dioxide emissions decreased in the aviation sector. This also applies to the land transport sector. Peaks of falling CO2 emissions occur in April 2020. The study showed that the reduction in economic activity due to «lockdowns» and quarantine restrictions affected the fall in energy consumption, especially in the aviation and land transport sectors, and this, in turn, led to a reduction carbon dioxide. This duly explains the relationship between declining economic growth and reducing CO2 emissions. The conducted research will be of interest to relevant ministries and departments in terms of their areas of responsibility, relevant organizations dealing with environmental and economic research, specialists who study and use in practice research on socio-economic problems of society.


2021 ◽  
Vol 13 (7) ◽  
pp. 3660
Author(s):  
Rathna Hor ◽  
Phanna Ly ◽  
Agusta Samodra Putra ◽  
Riaru Ishizaki ◽  
Tofael Ahamed ◽  
...  

Traditional Cambodian food has higher nutrient balances and is environmentally sustainable compared to conventional diets. However, there is a lack of knowledge and evidence on nutrient intake and the environmental greenness of traditional food at different age distributions. The relationship between nutritional intake and environmental impact can be evaluated using carbon dioxide (CO2) emissions from agricultural production based on life cycle assessment (LCA). The objective of this study was to estimate the CO2 equivalent (eq) emissions from the traditional Cambodian diet using LCA, starting at each agricultural production phase. A one-year food consumption scenario with the traditional diet was established. Five breakfast (BF1–5) and seven lunch and dinner (LD1–7) food sets were consumed at the same rate and compared using LCA. The results showed that BF1 and LD2 had the lowest and highest emissions (0.3 Mt CO2 eq/yr and 1.2 Mt CO2 eq/yr, respectively). The food calories, minerals, and vitamins met the recommended dietary allowance. The country’s existing food production system generates CO2 emissions of 9.7 Mt CO2 eq/yr, with the proposed system reducing these by 28.9% to 6.9 Mt CO2 eq/yr. The change in each food item could decrease emissions depending on the type and quantity of the food set, especially meat and milk consumption.


Author(s):  
Jeffrey Amelse

Mitigation of global warming requires an understanding of where energy is produced and consumed, the magnitude of carbon dioxide generation, and proper understanding of the Carbon Cycle. The latter leads to the distinction between and need for both CO2 and biomass CARBON sequestration. Short reviews are provided for prior technologies proposed for reducing CO2 emissions from fossil fuels or substituting renewable energy, focusing on their limitations. None offer a complete solution. Of these, CO2 sequestration is poised to have the largest impact. We know how to do it. It will just cost money, and scale-up is a huge challenge. Few projects have been brought forward to semi-commercial scale. Transportation accounts for only about 30% of U.S. overall energy demand. Biofuels penetration remains small, and thus, they contribute a trivial amount of overall CO2 reduction, even though 40% of U.S. corn and 30% of soybeans are devoted to their production. Bioethanol is traced through its Carbon Cycle and shown to be both energy inefficient, and an inefficient use of biomass carbon. Both biofuels and CO2 sequestration reduce FUTURE CO2 emissions from continued use of fossil fuels. They will not remove CO2 ALREADY in the atmosphere. The only way to do that is to break the Carbon Cycle by growing biomass from atmospheric CO2 and sequestering biomass CARBON. Theoretically, sequestration of only a fraction of the world’s tree leaves, which are renewed every year, can get the world to Net Zero CO2 without disturbing the underlying forests.


2014 ◽  
Vol 7 (2) ◽  
pp. 521-610 ◽  
Author(s):  
C. Le Quéré ◽  
R. Moriarty ◽  
R. M. Andrew ◽  
G. P. Peters ◽  
P. Ciais ◽  
...  

Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe datasets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from Land-Use Change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent Dynamic Global Vegetation Models forced by observed climate, CO2 and land cover change (some including nitrogen-carbon interactions). We compare the variability and mean land and ocean fluxes to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), EFF was 8.9 ± 0.4 GtC yr−1, ELUC 0.9 ± 0.5 GtC yr−1, GATM 4.3 ± 0.1 GtC yr−1, SOCEAN 2.6 ± 0.5 GtC yr−1, and SLAND 2.9 ± 0.8 GtC yr−1. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr−1, 2.3% above 2012, contining the growth trend in these emissions. ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 5.4 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1 and SLAND was 2.5 ± 0.9 GtC yr−1. GATM was high in 2013 reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004–2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3–3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr−1), 65% above emissions in 1990, based on projections of World Gross Domestic Product and recent changes in the carbon intensity of the economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870–2014, about 75% from EFF and 25% from ELUC. This paper documents changes in the methods and datasets used in this new carbon budget compared with previous publications of this living dataset (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014). Italic font highlights significant methodological changes and results compared to the Le Quéré et al. (2014) manuscript that accompanies the previous version of this living data.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
GOURI SHANKAR GIRI ◽  
S. V. S. RAJU ◽  
S. D. MOHAPATRA ◽  
MUNMUN MOHAPATRA

An experiment was conducted at Research Farm, National Rice Research Institute, Cuttack, Odisha, India to quantify the effect of elevated carbon dioxide (CO2) concentrations on the biology and morphometric parameters of yellow stem borer (Scirpophaga incertulas, Pyralidae, Lepidoptera). Yellow stem borer is one of the major pest of rice in the whole rice growing regions of South East Asia. The effect of three carbon dioxide concentrations i.e. 410 ppm (ambient), 550 ppm and 700 ppm on the duration of the developmental period as well as morphometric parameters of each stage of the lifecycle of the pest was analysed. It was found that, there was an increase in the duration of the developmental period of each stage of life cycle as the concentration of CO2 increases. However, the life span of the adult moth was significantly lower under the elevated CO2 concentrations when compared with ambient CO2 concentration. Morphometric parameters viz., mean length, width and weight of each larval instar, pupa and adult were found to be significantly higher in elevated concentrations of CO2 as compared to ambient concentration.


2021 ◽  
Author(s):  
Marco Quatrosi

<p>The following paper analyses monthly trends for CO<sub>2 </sub>emissions from energy consumption for 31 European countries, four primary fuels (i.e., Crude Oil, Natural Gas, Hard Coal, Lignite) and three secondary fuels (i.e., Gas/Diesel Oil, LPG, Naphta, Petroleum Coke) from 2008 to 2019. Carbon dioxide emission has been estimated following the Reference Approach in the 2006 IPCC Guidelines for National Greenhouse Gasses Inventories. Country-specific (e.g. Tier 2) coefficient were retrieved from the IPCC Emission Factor Database and the UN Common Reporting Framework. Data on fuel consumption (e.g., Gross Inland Deliveries) were taken from the Eurostat database. This paper will fill some knowledge gap analysing monthly trends of carbon dioxide emissions for major EU Countries. As the progressive phase-out of carbon is taking place pretty much in all Europe, Crude Oil exerted the largest amount of carbon dioxide emissions in the period considered. Analysis of selected countries unveiled several clusters within the EU in terms of major source of emissions. As final step, the paper has endeavoured the task of fitting a model for monthly CO<sub>2 </sub>forecasting. The whole series presents two structural breaks and can be explained by an autoregressive model of the first order. Indeed, further speculations on a more appropriate fit and more fuels in the estimation, is demanded to other works.</p>


2008 ◽  
Vol 8 (2) ◽  
pp. 7373-7389 ◽  
Author(s):  
A. Stohl

Abstract. Most atmospheric scientists agree that greenhouse gas emissions have already caused significant changes to the global climate system and that these changes will accelerate in the near future. At the same time, atmospheric scientists who – like other scientists – rely on international collaboration and information exchange travel a lot and, thereby, cause substantial emissions of carbon dioxide (CO2). In this paper, the CO2 emissions of the employees working at an atmospheric research institute (the Norwegian Institute for Air Research, NILU) caused by all types of business travel (conference visits, workshops, field campaigns, instrument maintainance, etc.) were calculated for the years 2005–2007. It is estimated that more than 90% of the emissions were caused by air travel, 3% by ground travel and 5% by hotel usage. The travel-related annual emissions were between 1.9 and 2.4 t CO2 per employee or between 3.9 and 5.5 t CO2 per scientist. For comparison, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5.9 t for Sweden and 19.1 t for Norway. The travel-related CO2 emissions of a NILU scientist, occurring in 24 days of a year on average, exceed the global average annual per capita emission. Norway's per-capita CO2 emissions are among the highest in the world, mostly because of the emissions from the oil industry. If the emissions per NILU scientist derived in this paper are taken as representative for the average Norwegian researcher, travel by Norwegian scientists would nevertheless account for a substantial 0.2% of Norway's total CO2 emissions. Since most of the travel-related emissions are due to air travel, water vapor emissions, ozone production and contrail formation further increase the relative importance of NILU's travel in terms of radiative forcing.


2021 ◽  
Author(s):  
Jean Baptiste Aboyitungiye ◽  
Suryanto Suryanto ◽  
Evi Gravitiani

Abstract The recent climatic phenomena observed in developing countries since the 2000s have raised concerns, fears, and debates within the international community and economists. Human activities are largely responsible for atmospheric warming through their emissions of CO2 and polluting substances with dramatic consequences and numerous losses of human life in some countries. Using panel data covering the 2000-2016 period, this study investigated the social vulnerability due to the CO2 emissions through an empirical study of CO2’s determinants in selected countries of sub-Sahara African and Southeast Asian countries. The STIRPAT model gave out the result that; explanatories causes of carbon dioxide emissions are different in the two regions: the agriculture-forestry and fishing value-added, and human development index have a strong explanatory power on CO2 emissions in the ASEAN countries, the per-capita domestic product has a positive and significant influence on carbon emissions in the SSA countries, ceteris paribus, but was statistically insignificant in the ASEAN countries. The growing population decreases carbon emissions in the SSA selected countries while is not statically significant in the ASEAN countries. There is therefore a kind of double penalty: those who suffer, and will suffer the most from the impacts of climate change due to CO2 emissions, are those who contribute the least to the problem. These results provide insight into future strategies for the mitigation of climatic hazards already present in some places and potential for others which will be felt on different scales across the regions. Some of the inevitable redistributive effects of those risks can be corrected by providing financial support to the poorest populations hardest hit by natural disasters.


Sign in / Sign up

Export Citation Format

Share Document