scholarly journals Investigation method of torsional properties and damages of glass/epoxy composite pipes

2006 ◽  
pp. 97-106 ◽  
Author(s):  
Slavisa Putic ◽  
Marina Stamenovic ◽  
Predrag Stajcic ◽  
Branislav Bajceta ◽  
Srdjan Bosnjak

Pipes made of composites glass fiber/epoxy resin are predominantly used in the chemical industry, construction, infrastructure and war technique. The pipes made for this purpose are in their use exposed to static and dynamic loading. Depending on the purpose, the pipes, especially those in complex structures, can be loaded by torsion. In that case, exceeding allowed tensions can cause damages such as cracking the fibers and matrix delamination. These damages can lead to the appearance of cracks on the pipes and in many cases to complete breakage of the pipe. Because of this, it is very important to evaluate composite pipes exposed to torsion and find out in which way the construction is weakened, what actually is the main goal of this paper.

2016 ◽  
Vol 58 (4) ◽  
pp. 333-336 ◽  
Author(s):  
Hawa Ahmad ◽  
Mohd. Shukry Abdul Majid ◽  
Mohd. Afendi Rojan ◽  
Fauziah Mat ◽  
Yakubu Dan-Mallam

2013 ◽  
Vol 853 ◽  
pp. 40-45 ◽  
Author(s):  
Huey Ling Chang ◽  
Chih Ming Chen ◽  
Cheng Ho Chen

Nanocomposite samples containing epoxy resin, glass fiber and 0~2 wt.% SiO2 nanopowder are prepared. The effects of SiO2 addition on the water absorption rate, glass transition temperature (Tg) and dynamic mechanical properties of the various samples are then observed. The water absorption of the nanocomposite specimens is then compared with that of pure glass fiber/epoxy composite specimens when tested in water. The results show that the addition of 2 wt.% SiO2 reduces the water absorption from 0.0704% to 0.0573%. The storage modulus with adding 2wt.% silica nanocomposite compared to the neat composite raises up 13.82%. Following the water absorption test, the mechanical properties of the samples are not obvious change. Therefore, the experimental results indicate that 2wt.% SiO2 addition is beneficial to the water resistance and dynamic mechanical properties of epoxy resin / glass fiber nanocomposites.


2019 ◽  
Vol 61 (7) ◽  
pp. 618-620
Author(s):  
Naveen Raj Visvanathan ◽  
Mohd Shukry Abdul Majid ◽  
Faisal Abrar Syamsul Bahri ◽  
Mohd Ridzuan Mohd Jamir ◽  
Mohd Afendi Rojan Arau

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2451
Author(s):  
Jianwen Zhang ◽  
Dongwei Wang ◽  
Lujia Wang ◽  
Wanwan Zuo ◽  
Lijun Zhou ◽  
...  

To study the effect of hyperbranched polyester with different kinds of terminal groups on the thermomechanical and dielectric properties of silica–epoxy resin composite, a molecular dynamics simulation method was utilized. Pure epoxy resin and four groups of silica–epoxy resin composites were established, where the silica surface was hydrogenated, grafted with silane coupling agents, and grafted with hyperbranched polyester with terminal carboxyl and terminal hydroxyl, respectively. Then the thermal conductivity, glass transition temperature, elastic modulus, dielectric constant, free volume fraction, mean square displacement, hydrogen bonds, and binding energy of the five models were calculated. The results showed that the hyperbranched polyester significantly improved the thermomechanical and dielectric properties of the silica–epoxy composites compared with other surface treatments, and the terminal groups had an obvious effect on the enhancement effect. Among them, epoxy composite modified by the hyperbranched polyester with terminal carboxy exhibited the best thermomechanical properties and lowest dielectric constant. Our analysis of the microstructure found that the two systems grafted with hyperbranched polyester had a smaller free volume fraction (FFV) and mean square displacement (MSD), and the larger number of hydrogen bonds and greater binding energy, indicating that weaker strength of molecular segments motion and stronger interfacial bonding between silica and epoxy resin matrix were the reasons for the enhancement of the thermomechanical and dielectric properties.


Sign in / Sign up

Export Citation Format

Share Document