scholarly journals Species identification in meat origin farm animals through DNA technology

2005 ◽  
Vol 21 (3-4) ◽  
pp. 13-24
Author(s):  
M.M. Ahmed

RAPD fingerprint technique was used on several meat sources to identify the species. The tested meat species were: Buffalo, Cattle, Goat and Sheep. Eighteen primers as a single, short oligonucleiotides were used to detect the species by fingerprint and genetic similarity as band sharing (BS) among these four species. By comparison between all four species, the band sharing average values were [51.0, 45.0, 59.0, 41.0, 48.0 and 70.0%] respectively. In respect of comparison, the comparison between Goat and Sheep showed high similarities while between Cattle and Goat showed low similarities. The genetic similarity as BS values ranged from 41.0 to 70.0 % respectively. The results showed that RAPD analysis provided a rapid and effective method to detect the genetic variation of different species. Also the results showed that RAPD analysis produced clear fingerprints from the products analyzed for which the species could be easily identified.

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 404B-404
Author(s):  
Patrick J. Conner ◽  
Bruce W. Wood

Genetic variation among pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars was studied using randomly amplified polymorphic DNA (RAPD) markers. Using a combination of primers, a unique fingerprint was produced for each of the pecan genotypes studied. The genetic relatedness between 44 cultivars was estimated using more than 100 RAPD markers. Genetic distances based on the simple matching coefficient varied from 0.91 to 0.59. The phenetic dendogram developed from cluster analysis showed relatively weak grouping association. However, cultivars with known pedigrees usually grouped with at least one of the parents and genetic similarity estimates appear to agree with known genetic relationships. Using RAPD information in determining genetic relationships among pecan cultivars with unknown or questionable pedigrees and the integration of that knowledge into the breeding program is discussed.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 426
Author(s):  
Yun-Hsiu Hsu ◽  
Wei-Cheng Yang ◽  
Kun-Wei Chan

The identification of animal species of meat in meat products is of great concern for various reasons, such as public health, religious beliefs, food allergies, legal perspectives, and bushmeat control. In this study, we developed a new technique to identify Formosan Reeves’ muntjac in meat using recombinase polymerase amplification (RPA) in combination with a lateral flow (LF) strip. The DNA extracted from a piece of Formosan Reeves’ muntjac meat was amplified by a pair of specific primers based on its mitochondrial cytochrome b gene for 10 min at a constant temperature ranging from 30 to 45 °C using RPA. Using the specific probe added to the RPA reaction system, the amplified products were visualized on the LF strip within 5 min. The total operating time from quick DNA extraction to visualizing the result was approximately 30 min. The RPA-LF system we designed was efficient when using boiled, pan-fried, roasted, stir-fried, or stewed samples. The advantages of simple operation, speediness, and cost-effectiveness make our RPA-LF method a promising molecular detection tool for meat species identification of either raw or variously cooked Formosan Reeves’ muntjac meat. It is also possible to apply this method to identify the meat of other wildlife sources.


2011 ◽  
Vol 14 (2) ◽  
pp. 285-286 ◽  
Author(s):  
J. Karakulska ◽  
A. Pobucewicz ◽  
P. Nawrotek ◽  
M. Muszyńska ◽  
A. Furowicz ◽  
...  

Molecular typing ofStaphylococcus aureusbased on PCR-RFLP ofcoagene and RAPD analysisThe aim of this study was molecular identification ofS. aureusstrains isolated from mastitic milk samples and establishing the genetic relationship between strains isolated from cows belonging to the same herd. In all 43 isolated strains thegapgene (930 bp) was amplified, which enabled their affiliation to theStaphylococcusgenus to be established. PCR-RFLP withAluI endonuclease of thegapgene as well asnuc(450 bp) andcoa(1130 bp) gene amplification allowed preciseS. aureusspecies identification. One hundred percent of the genetic relationship between strains was establishedviaRAPD-PCR and coa-typing.


Genome ◽  
2000 ◽  
Vol 43 (4) ◽  
pp. 724-727 ◽  
Author(s):  
Wenguang Cao ◽  
G Scoles ◽  
P Hucl ◽  
R N Chibbar

The genetic relationships among the five groups of hexaploid wheat: common, spelta, macha, vavilovii, and semi-wild wheat (SWW) are not clear. Random amplified polymorphic DNA (RAPD) analysis was used to assess phylogenetic relationships among these five morphological groups of hexaploid wheat. RAPD data were analyzed using the NTSYS-PC computer program to generate Jaccard genetic similarity coefficients. A dendrogram based on RAPD analysis grouped 15 accessions into five distinct clusters. These results are in agreement with those based on morphological classification, suggesting that common wheat is most closely related to SWW, followed by spelta, vavilovii, and macha.Key words: RAPD, macha, spelta, vavilovii, semi-wild wheat, phylogenetic relationships.


2002 ◽  
Vol 27 (6) ◽  
pp. 639-643 ◽  
Author(s):  
RITA C. B. WEIKERT-OLIVEIRA ◽  
M. APARECIDA DE RESENDE ◽  
HENRIQUE M. VALÉRIO ◽  
RACHEL B. CALIGIORNE ◽  
EDILSON PAIVA

Twenty isolates of four fungal species, agents of "Helminthosporium" diseases in cereals, were collected from different regions: nine Bipolarisoryzae isolated from rice (Oryza sativa), seven B.sorokiniana from wheat (Triticum aestivum), two B. maydis, and two Exserohilumturcicum from maize (Zea mays). The strains were compared by PCR-RFLP and RAPD analysis. Size polymorphism among the isolates in the ITS region comprising the 5.8 S rDNA indicated genetic differences among the isolates, while a UPGMA phenogram constructed after the digestion of this region with restriction enzymes showed inter- and intra-specific polymorphism. The RAPD profiles indicated an expressive level of polymorphism among different species, compared with a low level of polymorphism among isolates of the same species. A UPGMA phenogram grouped the isolates according to the species and their host plant. RAPD profiles did not reveal polymorphism that directly correlated climatic factors with geographic source of the isolates of B. sorokiniana, and B. oryzae. Teleomorphic species revealed high similarity with their correspondent anamorphs.


Author(s):  
Thien Minh Nguyen ◽  
Tien Thi My Pham

The agronomic values of this population have been evaluated in the field experiments based on their phenotypic performance of agronomic traits, but the genetic variability of this population needs to be evaluated via techniques based on genetic material - DNA. In this study, the genetic variability in the investigated population of 71 hybrids and their parents was evaluated by RAPD technique, using eight selected arbitrarily primers; Genetic parameters and dendrogram expressing the genetic relationships among the investigated population were analyzed by GenALEx 6.1, Popgene 1.31 and NTSYSpc 2.1 softwares. Eight primers were used to generate the amplify products on each individual in the investigated population. From 74 genotypes, a total of 109 fragments were generated, among which, there were 89 polymorphic bands representing 81.65% with an average of 11 polymorphic bands/primer. Genetic similarity coefficient among the investigated population, based on DICE coefficient, ranged from 0.560 (LH05/0822 and PB260) to 0.991 (LH05/0781 and LH05/0841) with an average of 0,796, meaning that the genetic distance among ranged from 0.009 to 0.440 with an average of 0.231. The Shannon index and mean heterozygosity values were 0.328 and 0,176, respectively. This indicated that the progenies of the two investigated crosses possessed a relatively high range of genetic variability. The analysis of molecular variance (AMOVA) showed that genetic variation within population represented 62%, while genetic variation among two different crosses contributes 38% to the total genetic variability. Dendrogram based on DICE’s genetic similarity using UPGMA method showed that the hybrids divide into two major genetic groups (0.75), but the crosses were scattered independently of the hybrid.


AGROFOR ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Miodrag DIMITRIJEVIĆ ◽  
Sofija PETROVIĆ ◽  
Borislav BANJAC ◽  
Goran BARAĆ

New challenges that food production is facing, requires novel approach inagricultural strategy. The scissors of growing demand for food and the limits of theEarth's resources are forcing plant breeders to run for the new borders, utilizing allthe available genetic variation in order to create fruitful and economically soundcultivars. Aegilops sp. (Poaceae) is a potential source of genetic variation for wheatimprovement. RAPD marker analysis was used in order to distinguish and evaluatedifferent genotypes of Aegilops sp. population samples from the collectiongathered during few years’ expeditions in South Adriatic, along the coastal, littoraland the inland parts of Montenegro. Ten randomly amplified polymorphic DNAmarkers (RAPDs) were tested: OPA-05, OPA-08, OPB-06, OPA-02, OPA-07,OPA-25, OPB-07, OPB-18, OPC-06, OPC-10 to examine genetic structuring on 18samples of 6 populations of different Aegilops sp. According to global AMOVA,75% of total gene diversity was attributable mostly to diversity within population(ΦPT =0.205 p=0.001), indicating that the groups of studied goat grass populationswere seemingly to differing genetically. In contrast, 25% of the variation camefrom variation among populations. According to PCoA, the distribution of 18 goatgrass accessions by Principal Coordinate Analysis shows 3 distinct groups. PCoaxis 1, PCo axis 2, and PCo axis 3 account for 20.8%, 18.2% and 14.1% of thevariation, respectively. The results showed that RAPD markers could be aconvenient tool for investigating genetic variation and for detecting geneticstructuring of populations. Genetic variability formed under natural selection wasentrenched.


Author(s):  
Geoff Simm ◽  
Geoff Pollott ◽  
Raphael Mrode ◽  
Ross Houston ◽  
Karen Marshall

Abstract In this chapter, topics focused on how to quantify the extent to which genes affect measured traits and how to use this information in breeding programmes. Highlights include: estimating heritability; estimating non-additive parameters, correlations, and genotype by environment interactions, molecular genetics and trait variations; and calculating inbreeding using SNP markers.


Sign in / Sign up

Export Citation Format

Share Document