scholarly journals Identification of heat-integrated distillation column using hybrid support vector regression and particle swarm optimization

2018 ◽  
Vol 24 (2) ◽  
pp. 101-115 ◽  
Author(s):  
Abdul Jaleel ◽  
K. Aparna

Distillation is the most commonly used method for separating fluid mixtures in oil and gas industries. It is a process that requires high energy usage. One of the efficient ways to save energy in a distillation column is by heat integration. One such type of distillation column is called a heat-integrated distillation column (HIDC). In HIDC, the prediction of mole fractions of the component in the product can be made using proper identification, or modeling, of the HIDC. However, nonlinear modeling of HIDC is a highly challenging task. Methods based on first principles are not sufficient for a highly nonlinear HIDC. Hence, a novel method for identification of HIDC using a non-parametric ?support vector regression (SVR)? method for predicting benzene composition in benzene-toluene HIDC is proposed in this work. The data used for identification is generated using process simulation software HYSYS. 100 samples of data were used for training and 50 samples of data were employed for validating the model. Particle swarm optimization (PSO) was also incorporated with SVR for obtaining optimized parameters of SVR. The proposed model is compared with other SVR models optimized with optimization methods other than PSO. The proposed model showed better performance over others.

2016 ◽  
Vol 25 (8) ◽  
pp. 1248-1258 ◽  
Author(s):  
Fayçal Megri ◽  
Ahmed Cherif Megri ◽  
Riadh Djabri

The thermal comfort indices are usually identified using empirical thermal models based on the human balanced equations and experimentations. In our paper, we propose a statistical regression method to predict these indices. To achieve this goal, first, the fuzzy support vector regression (FSVR) identification approach was integrated with the particle swarm optimization (PSO) algorithm. Then PSO was used as a global optimizer to optimize and select the hyper-parameters needed for the FSVR model. The radial basis function (RBF) kernel was used within the FSVR model. Afterward, these optimal hyper-parameters were used to forecast the thermal comfort indices: predicted mean vote (PMV), predicted percentage dissatisfied (PPD), new standard effective temperature (SET*), thermal discomfort (DISC), thermal sensation (TSENS) and predicted percent dissatisfied due to draft (PD). The application of the proposed approach on different data sets gave successful prediction and promising results. Moreover, the comparisons between the traditional Fanger model and the new model further demonstrate that the proposed model achieves even better identification performance than the original FSVR technique.


Sign in / Sign up

Export Citation Format

Share Document