scholarly journals Simulations of multi-size solid particles in a modified fluidized bed separator

2020 ◽  
Vol 26 (3) ◽  
pp. 267-276
Author(s):  
Naveedul Syed

This study focusses on the description of the internal state of a modified fluidized bed separator also known as the reflux classifier. The device is a highperformance beneficiating technology employed in many mineral and coal processing industries. A 2D continuum model was used to examine the transport behavior of solid particles within the reflux classifier for a multicomponent mixture under continuous operating conditions. Three different types of feeds comprising solid particles of size ranging 49?421 ?m and densities equal to 1400, 2490 and 5000 kg/m3 were simulated simultaneously under identical process conditions. The feed flux and fluidization velocity were kept at 0.0037 m3/m2s and 0.022 m/s, respectively. A comparison of the simulation results showed that the value of separation size shifted towards lower values, 340, 181 and 90 ?m, when the density of the feed was changed from 1400 to 2490 and 5000 kg/m3, respectively. The data generated through simulations was used to demonstrate the movement of solid particle within the inclined section by plotting the net flux of the solid particles across the inclined channel width. It was observed that the net flux of finer solid particles was higher than the coarser ones within the inclined section.

2013 ◽  
Vol 8 (1) ◽  
pp. 9-15

Biological treatment has been carried out in two different systems: aerated closed and threephase fluidized bed reactors for hydrocarbons removal from refinery wastewaters. For the two systems, hydrodynamic study allowed the determination of operating conditions before treatment experiments. Then, in a second time, biological treatments have been conducted in the same operating conditions. The obtained results showed that in the three-phase fluidized bed we can degrade hydrocarbons more rapidly than in a closed aerated bioreactor. Among the different appropriate techniques available to create efficient contacts between phases, the three-phase fluidization G/L/S where carrier particles are moving inside the reactor seems very interesting. It allows an intimate contact between phases and present many advantages concerning hydrodynamic and mass transfer phenomena. In fact, depending on operating conditions and the bubble flow behaviour, the three-phase fluidized bed could display different flow regimes In these systems called bioreactors the solid particles covered with a biofilm are fluidized by two ascending flows of air and contaminated water. With favourable operating conditions, from a hydrodynamic and mass transfer point of view, the pollutant can be biologically degraded up to 90%. Until this date, the three-phase bioreactors modelling remains very complex because it required taking into account several factors: the pollutant biodegradation rate in the biofilm, the bioreactor hydrodynamic characteristics, and the reactant interfacial gas-liquid and liquidsolid mass transfer. Thus the essential purpose of modelling is to integrate the microbial kinetics with the reactor hydrodynamics. We can notice that a few models have incorporated both bioreactor hydrodynamics and microbial kinetics. For the steady state bioreactor model, we generally assume that the particles are uniform in size, the biofilm is uniform in thickness, and the biofilm can be considered as homogeneous matrix through which oxygen and substrate diffuse and are consumed by the microbes. The liquid phase in the bioreactor substrate is considered to be axially dispersed while the gas phase is assumed to be in plug flow [2]. Rittmann (1997) proposed a model based on wake theory for predicting bed expansion and phase hold-ups for three-phase fluidized bed bioreactors. In this model he modified the correlation for the computation of the bioparticles drag coefficient CD [3]. He also attempted to explain the biofilm detachment which can occur with three broad patterns: erosion, sloughing and scouring and assumed that the factors affecting detachment rates can be grouped into two categories (physical forces and microorganisms physiology in the biofilm).


Author(s):  
Kavitha T C ◽  
B.S.V.S.R. Krishna

Expanded Bed Adsorption enables the protein recovery directly from cultivations of microorganisms or cells and preparations of disrupted cells, without the need for prior removal of suspended solids. The performance ofan expanded bed is comparable to a packed bed owing to reduced mixing of the adsorbent particles, clogging/plugging of solid particles in the column, while fluidized bed requires more velocity which may hinder the adsorption equilibrium. However,optimal operating conditions are more restricted than in a packed bed/fluidized bed due to the dependence of bed expansion on the sizeand density of the adsorbent particles as well as the viscosity and density of the feedstock. These difficulties can beovercomes in expanded-bed chromatography. In this work the steady state hydrodynamic behaviour of expanded beds studied experimentally.The present study focused on hydrodynamics of multiple particles separation and subsequently can be applied to the multiple proteins separation in a single expanded bed.


2019 ◽  
Vol 70 (5) ◽  
pp. 1507-1512
Author(s):  
Baker M. Abod ◽  
Ramy Mohamed Jebir Al-Alawy ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor

The aim of this study is to use the dry fibers of date palm as low-cost biosorbent for the removal of Cd(II), and Ni(II) ions from aqueous solution by fluidized bed column. The effects of many operating conditions such as superficial velocity, static bed height, and initial concentration on the removal efficiency of metal ions were investigated. FTIR analyses clarified that hydroxyl, amine and carboxyl groups could be very effective for bio-sorption of these heavy metal ions. SEM images showed that dry fibers of date palm have a high porosity and that metal ions can be trapped and sorbed into pores. The results show that a bed height of 6 cm, velocity of 1.1Umf and initial concentration for each heavy metal ions of 50 mg/L are most feasible and give high removal efficiency. The fluidized bed reactor was modeled using ideal plug flow and this model was solved numerically by utilizing the MATLAB software for fitting the measured breakthrough results. The breakthrough curves for metal ions gave the order of bio-sorption capacity as follow: Cd(II)]Ni(II).


Author(s):  
Xin Luan ◽  
Zhongli Ji ◽  
Longfei Liu ◽  
Ruifeng Wang

Rigid filters made of ceramic or metal are widely used to remove solid particles from hot gases at temperature above 260 °C in the petrochemical and coal industries. Pulse-jet cleaning of fine dust from rigid filter candles plays a critical role in the long-term operation of these filters. In this study, an experimental apparatus was fabricated to investigate the behavior of a 2050 mm filter candle, which included monitoring the variation of pressure dynamic characteristics over time and observing the release of dust layers that allowed an analysis of the cleaning performance of ISO 12103-1 test dusts with different particle size distributions. These results showed the release behavior of these dusts could be divided into five stages: radial expansion, axial crack, flaky release, irregular disruption and secondary deposition. The cleaning performance of smaller sized dust particles was less efficient as compared with larger sized dust particles under the same operating conditions primarily because large, flaky-shaped dust aggregates formed during the first three stages were easily broken into smaller, dispersed fragments during irregular disruption that forced more particles back to the filter surface during secondary deposition. Also, a “low-pressure and long-pulse width” cleaning method improved the cleaning efficiency of the A1 ultrafine test dust from 81.4% to 95.9%.


2014 ◽  
Vol 703 ◽  
pp. 171-174
Author(s):  
Bing Wang ◽  
Yi Xiao ◽  
Shou Hui Tong ◽  
Lan Fang ◽  
Da Hai You ◽  
...  

Improved step-feed de-nitrification progress combined with biological fluidized bed was introduced in this study. The progress had good performance and capacity of de-nitrification and organic matter. The experiment result showed that the de-nitrification efficiency of the improved biological fluidized bed with step-feed process was higher than the fluidized bed A/O process under the same water quality and the operating conditions. When the influent proportion of each segment was equal, the system showed good nitrogen removal efficiency with the change of influent C/N ratio, HRT and sludge return ratio. The removal rate of TN reached up to 88.2%. It showed that the simultaneous nitrification and de-nitrification phenomenon happened in the aerobic zone. The nitrogen removal mechanism was also studied.


2015 ◽  
Vol 19 (1) ◽  
pp. 317-328 ◽  
Author(s):  
Giuseppe Canneto ◽  
Cesare Freda ◽  
Giacobbe Braccio

The gas-particles flow in an interconnected bubbling fluidized cold model is simulated using a commercial CFD package by Ansys. Conservation equations of mass and momentum are solved using the Eulerian granular multiphase model. Bubbles formation and their paths are analyzed to investigate the behaviour of the bed at different gas velocities. Experimental tests, carried out by the cold model, are compared with simulation runs to study the fluidization quality and to estimate the circulation of solid particles in the bed.


2018 ◽  
Vol 23 (1) ◽  
Author(s):  
Johny Anderson Severo ◽  
Regina Célia Espinosa Modolo ◽  
Carlos Alberto Mendes Moraes ◽  
Flávia Schwarz Franceschini Zinani

ABSTRACT Improper disposal of sand used in molding processes after casting increases logistical costs and environmental impact because of the presence of the phenolic resin in its composition. The regeneration process of waste foundry phenolic sand (WFPS) aims to recycle this material. As mechanical regeneration methods are not efficient to guarantee 100% cleaning of the sand grains and their use again in the molding process, this work investigated the efficiency of a method of thermal regeneration of this type of residue that can be employed as a complementary procedure. A laboratory-scale fluidized bed reactor was designed and built to regenerate WFPS that was previously treated by a mechanical method. The methodology used to design and construct the fluidized bed prototype is described, as well as the characterization of the residual, the standard clean sand and the regenerated sand. The results of the thermal regeneration in the fluidized bed were very satisfactory with respect to the regeneration efficiency. For the nine process conditions tested, loss on ignition values were reduced when compared to standard clean sand. This study presents the advantages of a combination of two processes, mechanical and thermal regeneration, which allows to reduce the time and eventual temperature of resin removal due to the partial removal of the resin layer or its weakening during the mechanical regeneration process. Of the nine process conditions tested, six had loss on ignition values below the CSS. Thus, the thermal regeneration in the fluidized bed results was quite satisfactory in relation to the regeneration efficiency.


Sign in / Sign up

Export Citation Format

Share Document