scholarly journals The reduction of FCCU afterburning through process optimization and regenerator revamping

Author(s):  
Florin Enache ◽  
Dan Dănulescu ◽  
Ion Bolocan ◽  
Diana Cursaru

Operating the fluid catalytic cracking unit (FCCU) in afterburning conditions can increase the regenerator temperatures above the metallurgical design leading to mechanical failures of the cyclones and plenum chamber. This paper presents the methodology applied in a commercial FCCU to investigate the afterburning causes and the technical solutions that can be implemented to reduce the afterburning. Thus, by evaluating the regenerator temperature profile, regenerator as-build design and the internals mechanical status, it was concluded that the main cause of afterburning was the non-uniform distribution and mixing of air and catalyst. The industrial results showed that optimizing the catalyst bed level, stripping steam, reaction temperature and equilibrium catalyst (e-cat) activity reduced the afterburning by 39%. Other process parameters such as feed preheat temperature, slurry recycling and excess oxygen did not have a significant influence on afterburning because of air and catalyst maldistribution. Revamping the regenerator to assure a symmetrical layout of cyclones reduced the afterburning by 86%, increased the fines retention in FCCU inventory and provided a better regeneration of the spent e-cat. The reduction of operating temperatures at around 701?C removed the risk of catalyst thermal deactivation and therefore the e-cat activity was increased by 10.2 wt.%.

2014 ◽  
Vol 12 (1) ◽  
pp. 525-537
Author(s):  
Yingjie Liu ◽  
Jihe Yang ◽  
Xingying Lan ◽  
Jinsen Gao

Abstract The chemical stripping process in a commercial scale V-baffled resid fluid catalytic cracking stripper was simulated using computational fluid dynamics method. At the outset, it was assumed that the stripping steam initially desorbs hydrocarbons from the catalysts, and the hydrocarbons are then cracked through thermal and catalytic cracking reactions before entering the disengager. The Eulerian–Eulerian two-fluid model coupled with a modified drag model was applied to simulate the gas–solid flow behavior. A desorption model and five-lump kinetic model for thermal and catalytic cracking were utilized to represent the desorption and cracking processes during stripping. The flow modeling results indicated that three different flow regions exist in the stripper: bubbling flow, intermediate flow and turbulent flow. Increasing gas velocity improves the flow conditions of the gas, but adversely affects the particle flow. The degree of mixing of the gas and solid increases along the flowing direction. The results of reaction modeling showed that about 80% of hydrocarbons desorbed from the catalysts. The amount of desorbed oil increases with bed height leading to an increase of heavy oil in the disengager which induces coking problem. By increasing the catalyst temperature, the partial pressure of heavy oil can be lowered down which helps to decrease the disengager coking.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1146
Author(s):  
Aleksei Vjunov ◽  
Karl C. Kharas ◽  
Vasileios Komvokis ◽  
Amy Dundee ◽  
Bilge Yilmaz

There appears to be consensus among the general public that curtailing harmful emissions resulting from industrial, petrochemical and transportation sectors is a common good. However, there is also a need for balancing operating expenditures for applying the required technical solutions and implementing advanced emission mitigation technologies to meet desired sustainability goals. The emission of NOx from Fluid Catalytic Cracking (FCC) units in refineries for petroleum processing is a major concern, especially for those units located in densely populated urban settings. In this work we strive to review options towards cost-efficient and pragmatic emissions mitigation using optimal amounts of precious metal while evaluating the potential benefits of typical promoter dopant packages. We demonstrate that at present catalyst development level the refinery is no longer forced to make a promoter selection based on preconceived notions regarding precious metal activity but can rather make decisions based on the best “total cost” financial impact to the operation without measurable loss of the CO/NOx emission selectivity.


2015 ◽  
Vol 69 (11) ◽  
Author(s):  
Peter Lovás ◽  
Pavol Hudec ◽  
Marcela Hadvinová ◽  
Aleš Ház

AbstractThis study investigated the potential use of waste cooking oil (WCO) in the production of engine fuels and valuable chemicals via catalytic cracking. WCO was processed in its pure form and in a mixture with hydrotreated vacuum gas oil (HVGO). Catalytic cracking experiments were performed using a microactivity test (MAT) (simulation of the fluid catalytic cracking environment). In cracking over the standard fluid catalytic cracking equilibrium catalyst (FCC-ECAT), the oxygen contained in the feed was consumed in the formation of CO and CO


2014 ◽  
Vol 126 (2) ◽  
pp. 353-360 ◽  
Author(s):  
T CHIRANJEEVI ◽  
D T GOKAK ◽  
V RAVIKUMAR ◽  
P S VISWANATHAN

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2289
Author(s):  
Haihui Fu ◽  
Yan Chen ◽  
Tingting Liu ◽  
Xuemei Zhu ◽  
Yufei Yang ◽  
...  

Fluid catalytic cracking (FCC) spent catalysts are the most common catalysts produced by the petroleum refining industry in China. The National Hazardous Waste List (2016 edition) lists FCC spent catalysts as hazardous waste, but this listing is very controversial in the petroleum refining industry. This study collects samples of waste catalysts from seven domestic catalytic cracking units without antimony-based passivation agents and identifies their hazardous characteristics. FCC spent catalysts do not have the characteristics of flammability, corrosiveness, reactivity, or infectivity. Based on our analysis of the components and production process of the FCC spent catalysts, we focused on the hazardous characteristic of toxicity. Our results show that the leaching toxicity of the heavy metal pollutants nickel, copper, lead, and zinc in the FCC spent catalyst samples did not exceed the hazardous waste identification standards. Assuming that the standards for antimony and vanadium leachate are 100 times higher than that of the surface water and groundwater environmental quality standards, the leaching concentration of antimony and vanadium in the FCC spent catalyst of the G set of installations exceeds the standard, which may affect the environmental quality of surface water or groundwater. The quantities of toxic substances in all spent FCC catalysts, except those from G2, does not exceed the standard. The acute toxicity of FCC spent catalysts in all installations does not exceed the standard. Therefore, we exclude “waste catalysts from catalytic cracking units without antimony-based passivating agent passivation nickel agent” from the “National Hazardous Waste List.”


Fuel ◽  
2021 ◽  
Vol 292 ◽  
pp. 120364
Author(s):  
Peipei Miao ◽  
Xiaolin Zhu ◽  
Yangling Guo ◽  
Jie Miao ◽  
Mengyun Yu ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
pp. 3032
Author(s):  
Tuan Anh Le ◽  
Sinh Hoang Le ◽  
Thuy Ninh Nguyen ◽  
Khoa Tan Nguyen

The use of fluid catalytic cracking (FCC) by-products as aluminosilicate precursors in geopolymer binders has attracted significant interest from researchers in recent years owing to their high alumina and silica contents. Introduced in this study is the use of geopolymer concrete comprising FCC residue combined with fly ash as the requisite source of aluminosilicate. Fly ash was replaced with various FCC residue contents ranging from 0–100% by mass of binder. Results from standard testing methods showed that geopolymer concrete rheological properties such as yield stress and plastic viscosity as well as mechanical properties including compressive strength, flexural strength, and elastic modulus were affected significantly by the FCC residue content. With alkali liquid to geopolymer solid ratios (AL:GS) of 0.4 and 0.5, a reduction in compressive and flexural strength was observed in the case of geopolymer concrete with increasing FCC residue content. On the contrary, geopolymer concrete with increasing FCC residue content exhibited improved strength with an AL:GS ratio of 0.65. Relationships enabling estimation of geopolymer elastic modulus based on compressive strength were investigated. Scanning electron microscope (SEM) images and X-ray diffraction (XRD) patterns revealed that the final product from the geopolymerization process consisting of FCC residue was similar to fly ash-based geopolymer concrete. These observations highlight the potential of FCC residue as an aluminosilicate source for geopolymer products.


Sign in / Sign up

Export Citation Format

Share Document