scholarly journals Bernstein polynomials method and it’s error analysis for solving nonlinear problems in the calculus of variations: Convergence analysis via residual function

Filomat ◽  
2018 ◽  
Vol 32 (4) ◽  
pp. 1379-1393 ◽  
Author(s):  
Ahmad Bataineh

In this paper, Bernstein polynomials method (BPM) and their operational matrices are adopted to obtain approximate analytical solutions of variational problems. The operational matrix of differentiation is introduced and utilized to reduce the calculus of variations problems to the solution of system of algebraic equations. The solutions are obtained in the form of rapidly convergent finite series with easily computable terms. Comparison between the present method and the homotopy perturbation method (HPM), the non-polynomial spline method and the B-spline collocation method are made to show the effectiveness and efficiency for obtaining approximate solutions of the calculus of variations problems. Moreover, convergence analysis based on residual function is investigated to verified the numerical results.

2015 ◽  
Vol 4 (3) ◽  
pp. 420 ◽  
Author(s):  
Behrooz Basirat ◽  
Mohammad Amin Shahdadi

<p>The aim of this article is to present an efficient numerical procedure for solving Lane-Emden type equations. We present two practical matrix method for solving Lane-Emden type equations with mixed conditions by Bernstein polynomials operational matrices (BPOMs) on interval [<em>a; b</em>]. This methods transforms Lane-Emden type equations and the given conditions into matrix equation which corresponds to a system of linear algebraic equations. We also give some numerical examples to demonstrate the efficiency and validity of the operational matrices for solving Lane-Emden type equations (LEEs).</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Dumitru Baleanu ◽  
Mohsen Alipour ◽  
Hossein Jafari

We obtain the approximate analytical solution for the fractional quadratic Riccati differential equation with the Riemann-Liouville derivative by using the Bernstein polynomials (BPs) operational matrices. In this method, we use the operational matrix for fractional integration in the Riemann-Liouville sense. Then by using this matrix and operational matrix of product, we reduce the problem to a system of algebraic equations that can be solved easily. The efficiency and accuracy of the proposed method are illustrated by several examples.


2020 ◽  
Vol 9 (1) ◽  
pp. 244-255
Author(s):  
Majeed A. Al-Jawary ◽  
Ghada H. Ibraheem

AbstractIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using Mathematica® 10. Four applications, which are the well-known nonlinear problems: the magnetohydrodynamic squeezing fluid, the Jeffery-Hamel flow, the straight fin problem and the Falkner-Skan equation are presented and solved using the proposed methods. To illustrate the accuracy and efficiency of the proposed methods, the maximum error remainder is calculated. The results shown that the proposed methods are accurate, reliable, time saving and effective. In addition, the approximate solutions are compared with the fourth order Runge-Kutta method (RK4) achieving good agreements.


Author(s):  
Umer Saeed

In this paper, we present a reliable method for solving system of fractional nonlinear differential equations. The proposed technique utilizes the Haar wavelets in conjunction with a quasilinearization technique. The operational matrices are derived and used to reduce each equation in a system of fractional differential equations to a system of algebraic equations. Convergence analysis and implementation process for the proposed technique are presented. Numerical examples are provided to illustrate the applicability and accuracy of the technique.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1755
Author(s):  
M. S. Al-Sharif ◽  
A. I. Ahmed ◽  
M. S. Salim

Fractional differential equations have been applied to model physical and engineering processes in many fields of science and engineering. This paper adopts the fractional-order Chelyshkov functions (FCHFs) for solving the fractional differential equations. The operational matrices of fractional integral and product for FCHFs are derived. These matrices, together with the spectral collocation method, are used to reduce the fractional differential equation into a system of algebraic equations. The error estimation of the presented method is also studied. Furthermore, numerical examples and comparison with existing results are given to demonstrate the accuracy and applicability of the presented method.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
H. Bin Jebreen

A novel and efficient numerical method is developed based on interpolating scaling functions to solve 2D Fredholm integral equations (FIE). Using the operational matrix of integral for interpolating scaling functions, FIE reduces to a set of algebraic equations that one can obtain an approximate solution by solving this system. The convergence analysis is investigated, and some numerical experiments confirm the accuracy and validity of the method. To show the ability of the proposed method, we compare it with others.


2004 ◽  
Vol 10 (7) ◽  
pp. 1071-1081 ◽  
Author(s):  
M. Razzaghi ◽  
B. Sepehrian

A direct method for solving variational problems using single-term Walsh series is presented. Two nonlinear examples are considered. In the first example the classical brachistochrone problem is examined. and in the second example a higher-order nonlinear problem is considered. The properties of single-term Walsh series are given and are utilized to reduce the calculus of variations problems to the solution of algebraic equations. The method is general, easy to implement and yields accurate results.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Hammad Khalil ◽  
Ishak Hashim ◽  
Waqar Ahmad Khan ◽  
Abuzar Ghaffari

In this paper, we have extended the operational matrix method for approximating the solution of the fractional-order two-dimensional elliptic partial differential equations (FPDEs) under nonlocal boundary conditions. We use a general Legendre polynomials basis and construct some new operational matrices of fractional order operations. These matrices are used to convert a sample nonlocal heat conduction phenomenon of fractional order to a structure of easily solvable algebraic equations. The solution of the algebraic structure is then used to approximate a solution of the heat conduction phenomena. The proposed method is applied to some test problems. The obtained results are compared with the available data in the literature and are found in good agreement.Dedicated to my father Mr. Sher Mumtaz, (1955-2021), who gave me the basic knowledege of mathematics.


Author(s):  
Sandeep Dixit ◽  
Shweta Pandey ◽  
S.R. Verma

Background: In this article, an efficient direct method has been proposed in order to solve physically significant variational problems. The proposed technique finds its basis in Bernstein polynomials multiwavelets (BPMWs). The mechanism of the proposed method is to transform the variational problem into an algebraic equation system through the use of BPMWs. Objective: Since the necessary condition of extremization consists of a differential equation that cannot be easily integrated in complex cases, an approximated numerical solution becomes a necessity. Our primary objective is to establish a wavelet based method for solving variational problems of physical interest. Besides being computationally more effective, the proposed approach yields relatively more accurate results than other comparable methods. The approach employs fewer basis elements, which in turn increases the simplicity, decreases the calculation time, and furnishes better results. Methods: An operational matrix of integration, which is based on the BPMWs, is presented. We substitute the approximated values of , unknown function and their derivative functions with BPMWs operational matrix of integration and BPMWs. On substituting the respective values in the given variational problem, it gets converted into a system of algebraic equations. The obtained system is further solved using the Lagrange multiplier. Results: The results obtained yield a greater degree of convergence as compared to other existing numerical methods. Numerical illustrations based on physical variational problems and the comparisons of outcomes with exact solutions demonstrate that the proposed method yields better efficiency, applicability, and accuracy. Conclusion: The proposed method gives better results than other comparable methods, even with the use of a fewer number of basis elements. The large order of matrices, such as 32, 64, and 512, obtained by using other available methods is far too high to achieve accuracy in results in comparison to the ones we obtain by using matrices of relatively lower orders, such as 7, 8 and 13, in the proposed method. This method can also be used for extremization functional occurring in electrical circuits and mechanical physical problems.


Sign in / Sign up

Export Citation Format

Share Document