scholarly journals Semi-interpenetrating polymer networks based on polyacrylamide and poly[itaconic acid]

2003 ◽  
Vol 57 (11) ◽  
pp. 543-546 ◽  
Author(s):  
Melina Kalagasidis-Krusic ◽  
Biljana Nikolic ◽  
Jovanka Filipovic

The effect of pH and temperature on the equilibrium swelling properties of PIA/PAAm semi-IPNs were investigated.Semi-IPNs based on polyacrylamide (PAAm) and poly(itaconic acid) (PIA) were prepared by two different techniques, by polymerizing itaconic acid in the presence of polyacrylamide gel (Semi-IPNs-l) and by making the polyacrylamide gel in the presence of previously synthesized poly(itaconic acid) (Semi-IPNs-ll), with different PIA/PAAm mass ratios. The equilibrium swelling degree of an ionic network depends very much on the concentration of ionisable groups. The addition of a small amount of itaconic acid dramatically changes the swelling behavior of PAAm. Increase of the ionic monomer (IA) produces swelling degrees that increase to a high extent when the pH of the buffer solution is higher than the nominal pKa values of the acid groups. Gels with higher IA content swell less than PAAm gels in low pH buffers. At low pH, when complexation due to hydrogen bonding occurs between the carboxylic groups and amide groups of acrylamide, the polymer network collapses and the swelling ratio is low. The presence of hydrogen bonds in the complexes causes additional constraints in the network, acting as a physical crosslinking and makes the network less hydrophilic, because the carboxylic groups on the PIA are occupied in the complexes. As opposed to this, the equilibrium swelling degrees change very little with pH of the solution in nonionic PAAm gel.Hydrogels exhibit continuous changes in water content as a function of temperature. The swelling degree increases with increasing temperature due to gel expansion upon warming.

2007 ◽  
Vol 19 (5-6) ◽  
pp. 603-620 ◽  
Author(s):  
Irina Elena Raschip ◽  
Cornelia Vasile ◽  
Diana Ciolacu ◽  
Georgeta Cazacu

The polysaccharides are important materials in food, pharmaceutical, cosmetic and related biomedical applications. Xanthan gum is a microbial polysaccharide of great commercial significance. It is well known as one of the best thickening polymers due to its high intrinsic stiffness related to the helical conformation stabilized in the presence of excess salt. It is used in a wide variety of foods for a number of important reasons, including emulsion stabilization, temperature stability, compatibility with food ingredients, and its pseudoplastic rheological properties. Due to its properties in thickening aqueous solutions, as a dispersing agent, and stabilizer of emulsions and suspensions, xanthan gum is used in pharmaceutical formulations, cosmetics, and agricultural products, as well as in textile printing pastes, ceramic glazes, slurry explosive formulations, and rust removers. In this work the crosslinking of a mixture of xanthan and lignins in the presence of the epichlorohydrin, leading to superabsorbant hydrogels with high swelling rate in aqueous mediums, was studied. The swelling properties of these composite hydrogels were investigated. Three different types of lignin have been used namely: aspen wood lignin (L), annual fiber crop lignin (GL) and lignin epoxy-modified resin (LER). Semi-interpenetrating polymer network hydrogels in various ratios were prepared. The influence of gravimetric ratio between components of the semi-interpenetrating polymer networks, as well as the kinetics of water sorption will be discussed. The maximum swelling degree of the hydrogels and the swelling rate constant were determined as a function of the hydrogel's composition. It has been established that the nature of lignin significantly influences swelling process, the chemical modified lignin having a particular behavior.


2020 ◽  
Vol 22 (17) ◽  
pp. 5785-5797 ◽  
Author(s):  
Edwin J. Gachuz ◽  
Martín Castillo-Santillán ◽  
Karla Juarez-Moreno ◽  
Jose Maya-Cornejo ◽  
Antonio Martinez-Richa ◽  
...  

Biobased and conductive semi-interpenetrating polymer networks (semi-IPNs) consisting of crosslinked poly(itaconic acid) and containing the polysaccharide inulin were prepared taking advantage of the deep eutectic systems (DESs) chemistry.


2010 ◽  
Vol 119 (6) ◽  
pp. 3531-3537 ◽  
Author(s):  
D. E. Rodríguez-Félix ◽  
M. M. Castillo-Ortega ◽  
D. Real-Félix ◽  
J. Romero-García ◽  
A. S. Ledezma-Pérez ◽  
...  

Polymer ◽  
2006 ◽  
Vol 47 (17) ◽  
pp. 6226-6235 ◽  
Author(s):  
Seong Hyun Yoo ◽  
Claude Cohen ◽  
Chung-Yuen Hui

2020 ◽  
Vol 8 (47) ◽  
pp. 25363-25370
Author(s):  
Xue Li ◽  
Yu Chi Zhang ◽  
Sunjie Ye ◽  
Xi Rong Zhang ◽  
Tao Cai

Given the scalability and vast applicability of the heterogeneous catalysts and the burgeoning interests in biorelated applications, the interpenetrating polymer network catalysts will facilitate the realization of green, precise and efficient polymerization.


Gels ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 36 ◽  
Author(s):  
Panayiota A. Panteli ◽  
Costas S. Patrickios

This review summarizes work done on triply, or higher, interpenetrating polymer network materials prepared in order to widen the properties of double polymer network hydrogels (DN), doubly interpenetrating polymer networks with enhanced mechanical properties. The review will show that introduction of a third, or fourth, polymeric component in the DNs would further enhance the mechanical properties of the resulting materials, but may also introduce other useful functionalities, including electrical conductivity, low-friction coefficients, and (bio)degradability.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2561
Author(s):  
Monika Trudicova ◽  
Jiri Smilek ◽  
Michal Kalina ◽  
Marcela Smilkova ◽  
Katerina Adamkova ◽  
...  

This study introduces an original concept in the development of hydrogel materials for controlled release of charged organic compounds based on semi-interpenetrating polymer networks composed by an inert gel-forming polymer component and interpenetrating linear polyelectrolyte with specific binding affinity towards the carried active compound. As it is experimentally illustrated on the prototype hydrogels prepared from agarose interpenetrated by poly(styrene sulfonate) (PSS) and alginate (ALG), respectively, the main benefit brought by this concept is represented by the ability to tune the mechanical and transport performance of the material independently via manipulating the relative content of the two structural components. A unique analytical methodology is proposed to provide complex insight into composition–structure–performance relationships in the hydrogel material combining methods of analysis on the macroscopic scale, but also in the specific microcosms of the gel network. Rheological analysis has confirmed that the complex modulus of the gels can be adjusted in a wide range by the gelling component (agarose) with negligible effect of the interpenetrating component (PSS or ALG). On the other hand, the content of PSS as low as 0.01 wt.% of the gel resulted in a more than 10-fold decrease of diffusivity of model-charged organic solute (Rhodamine 6G).


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Girija Parameswaran ◽  
Beena Mathew

A novel Cd(II) ion imprinted interpenetrating polymer network (Cd(II)IIP) was prepared by free radical polymerization using alginic acid and NNMBA-crosslinked polyacrylamide in presence of initiator potassium persulphate. Cd(II)IIP showed higher capacity and selectivity than the nonimprinted polymer (NIP). The sorption capacities of Cd(II)IIP and NIP for Cd(II) ions were 0.886 and 0.663 meqmole-1, respectively. Kinetics studies showed that the sorption process closely agreed with a pseudosecond-order model. The thermodynamic data suggest that the sorption is a spontaneous endothermic process. Equilibrium experiments showed very good fit with the Langmuir isotherm equation for the monolayer sorption process. Cd(II)IIP exhibited good reusability, and the sorption capacity of Cd(II)IIP was stable within the first 4 cycles without obvious decrease. Also Cd(II)IIP showed almost 100% removal efficiency for Cd(II) ions in real environmental water samples, indicating that Cd(II)IIP could have wide application prospects in Cd(II) ion removal.


Sign in / Sign up

Export Citation Format

Share Document