scholarly journals Artificial neural network approach to modeling of alcoholic fermentation of thick juice from sugar beet processing

2012 ◽  
Vol 66 (2) ◽  
pp. 211-221 ◽  
Author(s):  
Aleksandar Jokic ◽  
Jovana Grahovac ◽  
Jelena Dodic ◽  
Z. Zoltan ◽  
Z Zavargo ◽  
...  

In this paper the bioethanol production in batch culture by free Saccharomyces cerevisiae cells from thick juice as intermediate product of sugar beet processing was examined. The obtained results suggest that it is possible to decrease fermentation time for the cultivation medium based on thick juice with starting sugar content of 5-15 g kg-1. For the fermentation of cultivation medium based on thick juice with starting sugar content of 20 and 25 g kg-1 significant increase in ethanol content was attained during the whole fermentation process, resulting in 12.51 and 10.95 dm3 m-3 ethanol contents after 48 h, respectively. Other goals of this work were to investigate the possibilities for experimental results prediction using artificial neural networks (ANNs) and to find its optimal topology. A feed-forward back-propagation artificial neural network was used to test the hypothesis. As input variables fermentation time and starting sugar content were used. Neural networks had one output value, ethanol content, yeast cell number or sugar content. There was one hidden layer and the optimal number of neurons was found to be nine for all selected network outputs. In this study transfer function was tansig and the selected learning rule was Levenberg-Marquardt. Results suggest that artificial neural networks are good prediction tool for selected network outputs. It was found that experimental results are in very good agreement with computed ones. The coefficient of determination (the R-squared) was found to be 0.9997, 0.9997 and 0.9999 for ethanol content, yeast cell number and sugar content, respectively.

2011 ◽  
pp. 241-249 ◽  
Author(s):  
Aleksandar Jokic ◽  
Jovana Grahovac ◽  
Jelena Dodic ◽  
Zoltan Zavargo ◽  
Sinisa Dodic ◽  
...  

Methods that can provide adequate accuracy in the estimation of variables from incomplete information are desirable for the prediction of fermentation processes. A feed-forward back-propagation artificial neural network was used for modelling of thick juice fermentation. Fermentation time and starting sugar content were usedas input variables, i.e. nodes. Neural network had one output node (ethanol content, yeast cell number or sugar content). The hidden layer had nine neurons. Garson's algorithm and connection weights were used for interpreting neural network. The inadequacy of Garson's algorithm can be seen by comparing with the results of regression analysis, which indicates that the influence of the fermentation time is higher. A better agreement of the results was obtained using network connection weights, a method that can be used to determine the relative importance of input variables.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 47
Author(s):  
Vasyl Teslyuk ◽  
Artem Kazarian ◽  
Natalia Kryvinska ◽  
Ivan Tsmots

In the process of the “smart” house systems work, there is a need to process fuzzy input data. The models based on the artificial neural networks are used to process fuzzy input data from the sensors. However, each artificial neural network has a certain advantage and, with a different accuracy, allows one to process different types of data and generate control signals. To solve this problem, a method of choosing the optimal type of artificial neural network has been proposed. It is based on solving an optimization problem, where the optimization criterion is an error of a certain type of artificial neural network determined to control the corresponding subsystem of a “smart” house. In the process of learning different types of artificial neural networks, the same historical input data are used. The research presents the dependencies between the types of neural networks, the number of inner layers of the artificial neural network, the number of neurons on each inner layer, the error of the settings parameters calculation of the relative expected results.


2016 ◽  
Vol 38 (2) ◽  
pp. 37-46 ◽  
Author(s):  
Mateusz Kaczmarek ◽  
Agnieszka Szymańska

Abstract Nonlinear structural mechanics should be taken into account in the practical design of reinforced concrete structures. Cracking is one of the major sources of nonlinearity. Description of deflection of reinforced concrete elements is a computational problem, mainly because of the difficulties in modelling the nonlinear stress-strain relationship of concrete and steel. In design practise, in accordance with technical rules (e.g., Eurocode 2), a simplified approach for reinforced concrete is used, but the results of simplified calculations differ from the results of experimental studies. Artificial neural network is a versatile modelling tool capable of making predictions of values that are difficult to obtain in numerical analysis. This paper describes the creation and operation of a neural network for making predictions of deflections of reinforced concrete beams at different load levels. In order to obtain a database of results, that is necessary for training and testing the neural network, a research on measurement of deflections in reinforced concrete beams was conducted by the authors in the Certified Research Laboratory of the Building Engineering Institute at Wrocław University of Science and Technology. The use of artificial neural networks is an innovation and an alternative to traditional methods of solving the problem of calculating the deflections of reinforced concrete elements. The results show the effectiveness of using artificial neural network for predicting the deflection of reinforced concrete beams, compared with the results of calculations conducted in accordance with Eurocode 2. The neural network model presented in this paper can acquire new data and be used for further analysis, with availability of more research results.


Author(s):  
М.Е. Ушков ◽  
В.Л. Бурковский

Рассматривается структура системы информационной поддержки процессов принятия решений оператором АЭС в оперативных условиях. Анализируются функциональные возможности системы информационной поддержки оператора (СИПО) на примере Нововоронежской атомной электростанции (НВ АЭС). Данная система дает возможность оператору, управляющему распределенным комплексом технологических объектов АЭС, проводить качественный анализ и обработку больших объемов сложностpуктурированной информации и принимать своевременные адекватные решения в темпе реального времени. Кроме того, рассматривается объект управления и его структура, приводятся рекомендации, направленные на увеличение функциональных возможностей СИПО на базе искусственных нейронных сетей. Одной из многочисленных функций СИПО является прогнозирование состояния объекта управления на основе реализации программно-технологического комплекса модели энергоблока (ПТК МЭ). Однако существующая модель не способна учесть все факторы, влияющие на производственный процесс. Альтернативой здесь выступает искусственная нейронная сеть, которая в процессе обучения может сформировать искомые зависимости между большим числом параметров объекта управления и получить более полный и достоверный прогноз. Предложена структура искусственной нейронной сети на базе нечёткой системы вывода, которая реализует возможности нейронных сетей и нечеткой логики We considered the structure of the information support system for decision-making by the NPP operator in operational conditions. We analyzed the functional capabilities of the operator information support system (SIPO) using the example of the Novovoronezh nuclear power plant (NV NPP). This system provides the operator managing the distributed complex of NPP technological facilities to carry out high-quality analysis and processing of large volumes of complex structured information and make timely adequate decisions in real time. In addition, we considered the control object and its structure and made recommendations aimed at increasing the functionality of the SIPO based on artificial neural networks. One of the many functions of the SIPO is to predict the state of the control object based on the implementation of the software and technological complex of the power unit model. However, the existing model is not able to take into account all the factors influencing the production process. An alternative here is an artificial neural network, which in the learning process can form the required dependencies between a large number of parameters of the control object and get a more complete and reliable forecast. The proposed structure of an artificial neural network based on a fuzzy inference system, which implements the capabilities of neural networks and fuzzy logic


2021 ◽  
Author(s):  
S.V. Zimina

Setting up artificial neural networks using iterative algorithms is accompanied by fluctuations in weight coefficients. When an artificial neural network solves the problem of allocating a useful signal against the background of interference, fluctuations in the weight vector lead to a deterioration of the useful signal allocated by the network and, in particular, losses in the output signal-to-noise ratio. The goal of the research is to perform a statistical analysis of an artificial neural network, that includes analysis of losses in the output signal-to-noise ratio associated with fluctuations in the weight coefficients of an artificial neural network. We considered artificial neural networks that are configured using discrete gradient, fast recurrent algorithms with restrictions, and the Hebb algorithm. It is shown that fluctuations lead to losses in the output signal/noise ratio, the level of which depends on the type of algorithm under consideration and the speed of setting up an artificial neural network. Taking into account the fluctuations of the weight vector in the analysis of the output signal-to-noise ratio allows us to correlate the permissible level of loss in the output signal-to-noise ratio and the speed of network configuration corresponding to this level when working with an artificial neural network.


2019 ◽  
Vol 26 ◽  
pp. 36-46
Author(s):  
S. KONOVALOV ◽  

In the proposed article, various methods of constructing an artificial neural network as one of the components of a hybrid expert system for diagnosis were investigated. A review of foreign literature in recent years was conducted, where hybrid expert systems were considered as an integral part of complex technical systems in the field of security. The advantages and disadvantages of artificial neural networks are listed, and the main problems in creating hybrid expert systems for diagnostics are indicated, proving the relevance of further development of artificial neural networks for hybrid expert systems. The approaches to the analysis of natural language sentences, which are used for the work of hybrid expert systems with artificial neural networks, are considered. A bulletin board is shown, its structure and principle of operation are described. The structure of the bulletin board is divided into levels and sublevels. At sublevels, a confidence factor is applied. The dependence of the values of the confidence factor on the fulfillment of a particular condition is shown. The links between the levels and sublevels of the bulletin board are also described. As an artificial neural network architecture, the «key-threshold» model is used, the rule of neuron operation is shown. In addition, an artificial neural network has the property of training, based on the application of the penalty property, which is able to calculate depending on the accident situation. The behavior of a complex technical system, as well as its faulty states, are modeled using a model that describes the structure and behavior of a given system. To optimize the data of a complex technical system, an evolutionary algorithm is used to minimize the objective function. Solutions to the optimization problem consist of Pareto solution vectors. Optimization and training tasks are solved by using the Hopfield network. In general, a hybrid expert system is described using semantic networks, which consist of vertices and edges. The reference model of a complex technical system is stored in the knowledge base and updated during the acquisition of new knowledge. In an emergency, or about its premise, with the help of neural networks, a search is made for the cause and the control action necessary to eliminate the accident. The considered approaches, interacting with each other, can improve the operation of diagnostic artificial neural networks in the case of emergency management, showing more accurate data in a short time. In addition, the use of such a network for analyzing the state of health, as well as forecasting based on diagnostic data using the example of a complex technical system, is presented.


2019 ◽  
Author(s):  
René Janßen ◽  
Jakob Zabel ◽  
Uwe von Lukas ◽  
Matthias Labrenz

AbstractArtificial neural networks can be trained on complex data sets to detect, predict, or model specific aspects. Aim of this study was to train an artificial neural network to support environmental monitoring efforts in case of a contamination event by detecting induced changes towards the microbial communities. The neural net was trained on taxonomic cluster count tables obtained via next-generation amplicon sequencing of water column samples originating from a lab microcosm incubation experiment conducted over 140 days to determine the effects of the herbicide glyphosate on succession within brackish-water microbial communities. Glyphosate-treated assemblages were classified correctly; a subsetting approach identified the clusters primarily responsible for this, permitting the reduction of input features. This study demonstrates the potential of artificial neural networks to predict indicator species in cases of glyphosate contamination. The results could empower the development of environmental monitoring strategies with applications limited to neither glyphosate nor amplicon sequence data.Highlight bullet pointsAn artificial neural net was able to identify glyphosate-affected microbial community assemblages based on next generation sequencing dataDecision-relevant taxonomic clusters can be identified by a stochastically subsetting approachJust a fraction of present clusters is needed for classificationFiltering of input data improves classification


2020 ◽  
Vol 6 (4) ◽  
pp. 120-126
Author(s):  
A. Malikov

In this paper we can see that identified computer incidents are subject for diagnostics, during which the characteristics of information security violations are clarified (purpose, causes, consequences, etc.). To diagnose computer incidents, we can use methods of automation while collection and processing the events that occur as a result of the implementation of scenarios for information security violations. Artificial neural networks can be used to solve the classification problem of assigning diagnostic data set (information image of a computer incident) to one of the possible values of the violation characteristic. The purpose of this work is to adapt the structure of an artificial neural network that allows the accuracy diagnostics of computer incidents when new training examples appear.


2021 ◽  
Author(s):  
Kathakali Sarkar ◽  
Deepro Bonnerjee ◽  
Rajkamal Srivastava ◽  
Sangram Bagh

Here, we adapted the basic concept of artificial neural networks (ANN) and experimentally demonstrate a broadly applicable single layer ANN type architecture with molecular engineered bacteria to perform complex irreversible...


Sign in / Sign up

Export Citation Format

Share Document