scholarly journals A lump-integral model based freezing and melting of a bath material onto a cylindrical additive of negligible resistance

2013 ◽  
Vol 49 (3) ◽  
pp. 245-256
Author(s):  
U.C. Singh ◽  
A. Prasad ◽  
A. Kumar

In a theoretical analysis, a lump-integral model for freezing and melting of the bath material onto a cylindrical additive having its thermal resistance negligible with respect to that of the bath is developed. It is regulated by independent nondimensional parameters, namely the Stefan number, St the heat capacity ratio, Cr and the modified conduction factor, Cofm. Series solutions associated with short times for time variant growth of the frozen layer and rise in interface temperature between the additive and the frozen layer are obtained. For all times, numerical solutions concerning the frozen layer growth with its melting and increase in the interface temperature are also found. Time for freezing and melting is estimated for different values of Cr, St and Cofm. It is predicted that for lower total time of freezing and melting Cofm<2 or Cr<1 needs to be maintained. When the bath temperature equals the freezing temperature of the bath material, the model is governed by only Cr and St and gives closed-form expressions for the growth of the frozen layer and the interface temperature. For the interface attaining the freezing temperature of the bath material the maximum thickness of the frozen layer becomes ?max-?Cr(Cr+St). The model is validated once it is reduced to a problem of heating of the additive without freezing of the bath material onto the additive. Its closed-form solution is exactly the same as that reported in the literature.

Author(s):  
Theodore G. Mordfin ◽  
Sivakumar S. K. Tadikonda

Abstract Guidelines are sought for generating component body models for use in controlled, articulated, flexible multibody dynamics system simulations. In support of this effort, exact closed-form and numerical solutions are developed for the small elastic motions of a planar, flexible, single link system, in which the link is represented as an Euler-Bernoulli bar in transverse vibration. The link is connected to ground by a pin joint, and the articulation is controlled by proportional and proprotional/derivative (PD) feedback control laws. The characteristics of the closed-form solution are shown to consist of combinations of the characteristic expressions associated with classical end conditions. A large-articulation flexible body model of a controlled-articulation flexible link is then developed and linearized about an arbitrary reference angle. This model uses the method of assumed modes to represent the flexible behavior of the link. It is shown the model is analytically equivalent to a purely structural model which uses a hybrid set of assumed modes, and that numerical convergence can be investigated in terms of admissible functions and quasi-comparison functions. Numerical evaluation of the use of various types of assumed modes is presented in a companion paper.


2018 ◽  
Vol 55 (6) ◽  
pp. 810-828 ◽  
Author(s):  
Abtin Jahanbakhshzadeh ◽  
Michel Aubertin ◽  
Li Li

Backfill is commonly used world-wide in underground mines to improve ground stability and reduce solid waste disposal on the surface. Practical solutions are required to assess the stress state in the backfilled stopes, as the stress state is influenced by the fill settlement that produces a stress transfer to the adjacent rock walls. The majority of existing analytical and numerical solutions for the stresses in backfilled openings were developed for two-dimensional (plane strain) conditions. In reality, mine stopes have a limited extension in the horizontal plane so the stresses are influenced by the four walls. This paper presents recent three-dimensional (3D) simulations results and a new 3D closed-form solution for the vertical and horizontal stresses in inclined backfilled stopes with parallel walls. This solution takes into account the variation of the stresses along the opening width and height, for various inclination angles and fills properties. The numerical results are used to validate the analytical solution and illustrate how the stress state varies along the opening height, length, and width, for different opening sizes and inclination angles of the footwall and hanging wall. Experimental results are also used to assess the validity of the proposed solution.


2011 ◽  
Vol 63-64 ◽  
pp. 147-151
Author(s):  
Li Ming Chu ◽  
Wang Long Li ◽  
Hsiang Chen Hsu

In this paper, the numerical solutions in pure squeeze motion are explored by using hydrodynamic lubrication (HL) and elastohydrodynamic lubrication (EHL) models at constant squeeze velocity with power law lubricants. This paper also proposes a closed form solution to calculate the relationship between central pressure and central film thickness under HL condition. In order to save time calculation, the present closed form solution can be used as the initial condition for analysis of EHL at the high-pressure stage. In addition, this paper also discussed the HL and EHL squeeze film characteristics.


Author(s):  
B S Yilbas ◽  
M Sami ◽  
A Al-Farayedhi

The laser processing of engineering materials requires an in-depth analysis of the applicable heating mechanism. The modelling of the laser heating process offers improved understanding of the machining mechanism. In the present study, a closed-form solution for a step input laser heating pulse is obtained and a numerical scheme solving a three-dimensional heat transfer equation is introduced. The numerical solution provides a comparison of temperature profiles with those obtained from the analytical approach. To validate the analytical and numerical solutions, an experiment is conducted to measure the surface temperature and evaporating front velocity during the Nd—YAG laser heating process. It is found that the temperature profiles resulting from both theory and experiment are in a good agreement. However, a small discrepancy in temperatures at the upper end of the profiles occurs. This may be due to the assumptions made in both the numerical and the analytical approaches. In addition, the equilibrium time, based on the energy balance among the internal energy gain, conduction losses and latent heat of fusion, is introduced.


2017 ◽  
Vol 11 (12) ◽  
pp. 12 ◽  
Author(s):  
Ibrahim Mousa Abu-Alshaikh

The literature reveals that the non-conservative deflection of an elastic cantilever beam caused by applying follower tip loading was investigated and solved by various numerical methods like: Runge Kutta, iterative shooting, finite element, finite difference, direct iterative and non-iterative numerical methods. This is due to the fact that the Euler–Bernoulli nonlinear differential equation governing the problem contains the “slope at the free end”, this slope however needs special numerical treatment. On the other hand, some of these methods fail to find numerical solutions for extremely large loading conditions. Hence, this paper is aimed to obtain a closed-form solution for solving the large deflection of a cantilever beam opposed to a concentrated point follower load at its free end. This closed-form solution when compared with other conventional numerical approaches is characterized by simplicity, stability and straightforwardness in getting the beam deflection and slopes even for extremely large loading conditions. The closed-form solution is obtained by applying complex analysis along with elliptic-integral approach. Very good results were obtained when the elastica of the beam compared with that of various numerical methods which are used in analyzing similar problem.


Author(s):  
Yufeng Xu ◽  
Om P. Agrawal

Harmonic oscillators play a fundamental role in many areas of science and engineering, such as classical mechanics, electronics, quantum physics, and others. As a result, harmonic oscillators have been studied extensively. Classical harmonic oscillators are defined using integer order derivatives. In recent years, fractional derivatives have been used to model the behaviors of damped systems more accurately. In this paper, we use three operators called K-, A- and B-operators to define the equation of motion of an oscillator. In contrast to fractional integral and derivative operators which use fractional power kernels or their variations in their definitions, the K-, A- and B-operators allow the kernel to be arbitrary. In the case when the kernel is a power kernel, these operators reduce to fractional integral and derivative operators. Thus, they are more general than the fractional integral and derivative operators. Because of the general nature of the K-, A- and B-operators, the harmonic oscillators are called the generalized harmonic oscillators. The equations of motion of a generalized harmonic oscillator are obtained using a generalized Euler-Lagrange equation presented recently. In general, the resulting equations cannot be solved in closed form. A numerical scheme is presented to solve these equations. To verify the effectiveness of the numerical scheme, a problem is considered for which a closed form solution could be found. Numerical solution for the problem is compared with the analytical solution. It is demonstrated that the numerical scheme is convergent, and the order of convergence is 2. For a special kernel, this scheme reduces to a scheme presented recently in the literature.


2015 ◽  
Vol 82 (4) ◽  
Author(s):  
Shahab Mansoor-Baghaei ◽  
Ali M. Sadegh

In this paper, a closed form solution of an arbitrary oriented hollow elastic ellipsoidal shell impacting with an elastic flat barrier is presented. It is assumed that the shell is thin under the low speed impact. Due to the arbitrary orientation of the shell, while the pre-impact having a linear speed, the postimpact involves rotational and translational speed. Analytical solution for this problem is based on Hertzian theory (Johnson, W., 1972, Impact Strength of Materials, University of Manchester Institute of Science and Technology, Edward Arnold Publication, London) and the Vella’s analysis (Vella et al., 2012, “Indentation of Ellipsoidal and Cylindrical Elastic Shells,” Phys. Rev. Lett., 109, p. 144302) in conjunction with Newtonian method. Due to the nonlinearity and complexity of the impact equation, classical numerical solutions cannot be employed. Therefore, a linearization method is proposed and a closed form solution for this problem is accomplished. The closed form solution facilitates a parametric study of this type of problems. The closed form solution was validated by an explicit finite element method (FEM). Good agreement between the closed form solution and the FE results is observed. Based on the analytical method the maximum total deformation of the shell, the maximum transmitted force, the duration of the contact, and the rotation of the shell after the impact were determined. Finally, it was concluded that the closed form solutions were trustworthy and appropriate to investigate the impact of inclined elastic ellipsoidal shells with an elastic barrier.


2012 ◽  
Vol 19 (6) ◽  
pp. 1415-1426 ◽  
Author(s):  
A. Barari ◽  
A. Kimiaeifar ◽  
M.G. Nejad ◽  
M. Motevalli ◽  
M.G. Sfahani

Many nonlinear systems in industry including oscillators can be simulated as a mass-spring system. In reality, all kinds of oscillators are nonlinear due to the nonlinear nature of springs. Due to this nonlinearity, most of the studies on oscillation systems are numerically carried out while an analytical approach with a closed form expression for system response would be very useful in different applications. Some analytical techniques have been presented in the literature for the solution of strong nonlinear oscillators as well as approximate and numerical solutions. In this paper, Amplitude-Frequency Formulation (AFF) approach is applied to analyze some periodic problems arising in classical dynamics. Results are compared with another approximate analytical technique called Energy Balance Method developed by the authors (EBM) and also numerical solutions. Close agreement of the obtained results reveal the accuracy of the employed method for several practical problems in engineering.


2008 ◽  
Vol 599 ◽  
pp. 299-307 ◽  
Author(s):  
G. BELAUD ◽  
X. LITRICO

The potential flow upstream from a contraction in a rectangular flume is analysed. In order to calculate the potential function, the flow is considered as the superposition of sinks uniformly distributed in the contraction. The effect of boundaries is taken into account by introducing virtual sinks. The calculation is performed in the complex plane and provides a closed-form solution of the complex potential function. As an illustration, the effect of contraction size and position is analysed, and the solution is compared to experimental measurements and other numerical solutions for vertical sluice gates.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
Yufeng Xu ◽  
Om P. Agrawal

In this paper, we use three operators called K-, A-, and B-operators to define the equation of motion of an oscillator. In contrast to fractional integral and derivative operators which use fractional power kernels or their variations in their definitions, the K-, A-, and B-operators allow the kernel to be arbitrary. In the case, when the kernel is a power kernel, these operators reduce to fractional integral and derivative operators. Thus, they are more general than the fractional integral and derivative operators. Because of the general nature of the K-, A-, and B-operators, the harmonic oscillators are called the generalized harmonic oscillators. The equations of motion of a generalized harmonic oscillator are obtained using a generalized Euler–Lagrange equation presented recently. In general, the resulting equations cannot be solved in closed form. A finite difference scheme is presented to solve these equations. To verify the effectiveness of the numerical scheme, a problem is considered for which a closed form solution could be found. Numerical solution for the problem is compared with the analytical solution, which demonstrates that the numerical scheme is convergent.


Sign in / Sign up

Export Citation Format

Share Document