scholarly journals Phase relationships in the Al-rich region of the Al-Y-Zr system

2017 ◽  
Vol 53 (1) ◽  
pp. 9-12 ◽  
Author(s):  
X. Bao ◽  
L. Liu ◽  
S. Huang ◽  
Y. Jiang ◽  
X. Wang ◽  
...  

The phase relations in the Al-Y-Zr ternary system at 873 K have been investigated by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) in backscattered electron imaging (BSE) modes. Six three-phase equilibria are determined and no ternary compound is observed. In the meantime, first principle calculations are used to provide theoretical guidance to understand the experimental results.

Author(s):  
Ketong Luo ◽  
Jianlie Liang ◽  
Jinming Zhu ◽  
Xuehong Cui

Abstract The Fe-rich corner of the Ce–Nd–B–Fe quaternary system at 773 K has been experimentally investigated by means of X-ray powder diffraction and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy techniques. No quaternary compound was observed in this system. Ce2Fe14B and Nd2Fe14B were found to form the continuous solid solution (Ce,Nd)2Fe14B. Ce-Fe4B4 and NdFe4B4 also form the solid solution (Ce,Nd)-Fe4B4. The isothermal section consists of 8 three-phase regions and 2 four-phase regions.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2396 ◽  
Author(s):  
Jinfa Liao ◽  
Hang Wang ◽  
Tzu-Yu Chen

The phase equilibrium of the Ni–Al–La ternary system in a nickel-rich region was observed at 800 °C and 1000 °C using scanning electron microscopy backscattered electron imaging, energy dispersive X-ray spectrometry and X-ray diffractometry. The solubility of Al in the Ni5La phase was remeasured at 800 °C and 1000 °C. Herein, we report a new ternary phase, termed Ni2AlLa, confirmed at 800 °C. Its X-ray diffraction (XRD) pattern was indexed and space group determined using Total Pattern Solution (TOPAS), and the suitable lattice parameters were fitted using the Pawley method and selected-area electron diffraction. Ni2AlLa crystallizes in the trigonal system with a space group R3 (no. 146), a = 4.1985 Å and c = 13.6626 Å. A self-consistent set of thermodynamic parameters for the Al–La and Ni–La binary systems and the Ni–Al–La ternary system includes a Ni2AlLa ternary phase, which was optimized using the CALPHAD method. The calculated thermodynamic and phase-equilibria data for the binary and ternary systems are consistent with the literature and measured data.


Sign in / Sign up

Export Citation Format

Share Document