Phase relationships in the Fe-rich region of the Ce–Nd–B–Fe quaternary system at 773 K

Author(s):  
Ketong Luo ◽  
Jianlie Liang ◽  
Jinming Zhu ◽  
Xuehong Cui

Abstract The Fe-rich corner of the Ce–Nd–B–Fe quaternary system at 773 K has been experimentally investigated by means of X-ray powder diffraction and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy techniques. No quaternary compound was observed in this system. Ce2Fe14B and Nd2Fe14B were found to form the continuous solid solution (Ce,Nd)2Fe14B. Ce-Fe4B4 and NdFe4B4 also form the solid solution (Ce,Nd)-Fe4B4. The isothermal section consists of 8 three-phase regions and 2 four-phase regions.

2017 ◽  
Vol 53 (1) ◽  
pp. 9-12 ◽  
Author(s):  
X. Bao ◽  
L. Liu ◽  
S. Huang ◽  
Y. Jiang ◽  
X. Wang ◽  
...  

The phase relations in the Al-Y-Zr ternary system at 873 K have been investigated by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) in backscattered electron imaging (BSE) modes. Six three-phase equilibria are determined and no ternary compound is observed. In the meantime, first principle calculations are used to provide theoretical guidance to understand the experimental results.


Author(s):  
Xuehong Cui ◽  
Jinming Zhu ◽  
Ketong Luo ◽  
Jianlie Liang

Abstract Phase relationships in the Ce-Nd-B ternary system at 773 K were investigated by means of X-ray diffraction and scanning electron microscopy with energy dispersive X-ray spectroscopy techniques. Six borides, i. e. CeB4, CeB6, NdB4, NdB6, NdB66 and Nd2B5 are confirmed in this work. No ternary compound was observed. CeB4 and NdB4 were discovered to form the continuous solid solution phase (Ce,Nd)B4, CeB6 and NdB6 also form the solid solution phase (Ce,Nd)B6. The maximum solid solubility of Ce in (Ce,Nd)2B5 phase is 46.5 at.%. The isothermal section of the Ce-Nd-B ternary system at 773 K consists of 3 three-phase regions, 7 two-phase regions and 7 single- phase regions.


Author(s):  
Ivan Saenko ◽  
O. Fabrichnaya

AbstractThermodynamic parameters were assessed for the MgO–FeOx system and combined with already available descriptions of ZrO2-FeOx and ZrO2-MgO systems to calculate preliminary phase diagrams for planning experimental investigations. Samples of selected compositions were heat treated at 1523, 1673 and 1873 K and characterized using x-ray and scanning electron microscopy combined with energy dispersive x-ray spectroscopy (SEM/EDX). Experiments indicated extension of cubic ZrO2 solid solution into the ternary system at 1873 K (75 mol.% ZrO2, 10 mol.% FeOx and 15 mol.% MgO) and limited solubility of 4 mol.% ZrO2 in spinel phase. Based on the obtained results thermodynamic parameters of C-ZrO2 and spinel phase were optimized.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Viera Homolová ◽  
Ján Kepič ◽  
Adéla Zemanová ◽  
Ondřej Zobač

Phase compositions of B-Fe-Mn-V alloys were studied by several experimental methods (DTA measurement, X-ray diffractions, and scanning electron microscopy). Besides the experimental study of the quaternary system, thermodynamic modelling of the ternary B-Mn-V system by the Calphad method and thermodynamic calculations for the quaternary B-Fe-Mn-V system were performed. Calculations for the quaternary system are based on the ternary subsystems (B-Mn-V, B-Fe-V, B-Fe-Mn, and Fe-Mn-V). Boron is modelled as an interstitial element in all solid solutions of vanadium, manganese, and iron. Very good agreement between experimental results and thermodynamic calculations was achieved. The created thermodynamic database is suitable for thermodynamic calculations of phase diagrams for all the ternary subsystems and also for the B-Fe-Mn-V quaternary system.


2003 ◽  
Vol 807 ◽  
Author(s):  
A. G. Ptashkin ◽  
S. V. Stefanovsky ◽  
S. V. Yudintsev ◽  
S. A. Perevalov

ABSTRACTPu-bearing zirconolite and pyrochlore based ceramics were prepared by melting under oxidizing and reducing conditions at 1550 °C. 239Pu content in the samples ranged between ∼10 and ∼50 wt.%. Phase composition of the ceramics and Pu partitioning were studied using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive system (SEM/EDS). Major phases in the samples were found to be the target zirconolite and pyrochlore as well as a cubic fluorite structure oxide. Normally the Pu content in the Pu host phases was 10–12 wt.%. This corresponds to the Pu content recommended for matrices for immobilization of excess weapons plutonium. At higher Pu content (up to 50 wt.%) additional phases, such as a PuO2-based cubic fluorite-structured solid solution, perovskite, and rutile were found.


2009 ◽  
Vol 1228 ◽  
Author(s):  
Masataka Hakamada ◽  
Yasumasa Chino ◽  
Mamoru Mabuchi

AbstractMetallic nanoporous architecture can be spontaneously attained by dealloying of a binary alloy. The nanoporous architecture can be often fabricated in noble metals such as Au and Pt. In this study, nanoporous Ni, Ni-Cu are fabricated by dealloying rolled Ni-Mn and Cu-Ni-Mn alloys, respectively. Unlike conventional Raney nickel composed of brittle Ni-Al or Cu-Al intermetallic compounds, the initial alloys had good workability probably because of their fcc crystal structures. After the electrolysis of the alloys in (NH4)2SO4 aqueous solution, nanoporous architectures of Ni and Ni-Cu with pore and ligament sizes of 10–20 nm were confirmed by scanning electron microscopy and transmission electron microscopy. X-ray diffraction analyses suggested that Ni and Cu atoms form a homogeneous solid solution in the Ni-Cu nanoporous architecture. The ligament sizes of nanoporous Ni and Ni-Cu were smaller than that of nanoporous Cu, reflecting the difference between diffusivities of Ni and Cu at solid/electrolyte interface. Ni can reduce the pore and ligament sizes of resulting nanoporous architecture when added to initial Cu-Mn alloys.


2013 ◽  
Vol 747-748 ◽  
pp. 613-618
Author(s):  
Qiao Zhang ◽  
Shu Hua Liang ◽  
Chen Zhang ◽  
Jun Tao Zou

The as-cast Ni-W alloys with 15wt%W, 25wt%W and 30wt%W were annealed in hydrogen at 1100. The effect of the annealing time on the microstructure of Ni-W alloys was studied, and the phase constituents and microstructure of annealed Ni-W alloys were characterized by the X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that no any phase changed for Ni-15%W, Ni-25%W and Ni-30%W alloys annealed for 60 min, 90 min and 150 min, which were still consisted of single-phase Ni (W) solid solution. However, microstructure had a significant change after annealing. With increase of annealing time, the microstructure of Ni-15%W alloy became more uniform after annealing for 90 min, and the average grain size was 95μm, whereas the grain size of Ni-15%W alloy increased significantly after annealing for 150 min. For Ni-25%W and Ni-30%W, there was no obvious change on the grain size with increase of annealing time, and the amount of oxides at grain boundaries gradually reduced. After annealing for 150 min, the impurities at grain boundaries almost disappeared. Subsequently, the annealing at 1100 for 150 min was beneficial for the desired microstructure of Ni-25%W and Ni-30%W alloys.


2008 ◽  
Vol 368-372 ◽  
pp. 995-997
Author(s):  
Cui Wei Li ◽  
Hong Xiang Zhai ◽  
Yang Zhou ◽  
Shi Bo Li ◽  
Zhi Li Zhang

In this study, free Ti/Si/Al/C powder mixtures with molar ratio of 3:0.4:0.8:1.8 were heated in Argon with various schedules, in order to reveal the possibility for the synthesis of Ti3Si0.4Al0.8C1.8 solid solution powder. X-ray diffraction (XRD) was used for the evaluation of phase identities of the powder after different treatments. Scanning electron microscopy (SEM) was used to observe the morphology of the Ti3Si0.4Al0.8C1.8 solid solution. XRD results showed that predominantly single phase samples of Ti3Si0.4Al0.8C1.8 was prepared after heating at 1400oC for 5 min in Argon and the lattice parameters of Ti3Si0.4Al0.8C1.8 lay between those of Ti3SiC2 and Ti3AlC2.


2011 ◽  
Vol 282-283 ◽  
pp. 129-132
Author(s):  
Chang Su ◽  
Jing Kun Yu ◽  
Ning Ning Lv

For investigating the reaction behavior of phosphorus in CaO–SiO2–FeOx low basicity slag, the CaO–SiO2–FeOx slag containing various amount of CaO particles was heated at 1623K and 1673K, respectively for 10 to 600s, and the products formed at the interface of the CaO particles and molten slag were observed by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX). The research results showed that the solid solution containing P2O5 increased with the increasing of the heating temperature, and the formation of condensed phase was promoted by increasing the holding time and the CaO solid proportion.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
P. V. Seredin

We investigated MOCVD epitaxial heterostructures based on AlxGa1−xAs ternary solid solutions, obtained in the range of compositions x~0.20–0.50 and doped with high concentrations of phosphorus and silicon atoms. Using the methods of high-resolution X-ray diffraction, scanning electron microscopy, X-ray microanalysis, Raman spectroscopy, and photoluminescence spectroscopy we have shown that grown epitaxial films represent five-component (AlxGa1−xAs1−yPy)1−zSiz solid solutions. The implementation of silicon in solid solution with a concentration of ~ 0.01 at.% leads to the formation of the structure with deep levels, DX centers, the occurrence of which fundamentally affects the energy characteristics of received materials.


Sign in / Sign up

Export Citation Format

Share Document