scholarly journals Application of immobilized waste brewery yeast cells for Cd2+ removal: Equilibrium and kinetics

2011 ◽  
Vol 76 (3) ◽  
pp. 363-373 ◽  
Author(s):  
Szende Tonk ◽  
Andrada Măicăneanu ◽  
Cerasella Indolean ◽  
Silvia Burca ◽  
Cornelia Majdik

In this investigation, the removal of Cd2+ ions by a brewery waste biomass in immobilized (Ca-alginate beads) form was studied. The removal process was conducted at room temperature under batch conditions (magnetic stirring) using different initial cadmium concentrations. The equilibrium of biosorption was reached in 150 minutes for all employed initial concentrations. The maximum biosorption capacity was calculated to be 5.96 mg Cd2+ g-1 yeast for an initial Cd2+ concentration of 169 mg L-1. Langmuir and Freundlich adsorption isotherms were used to correlate the equilibrium adsorption data. Based on the correlation coefficients, it was concluded that the Langmuir isotherm is more suitable for describing the equilibrium data of cadmium biosorption. In addition, first and pseudo-second order kinetic models were applied to describe the biosorption process. The kinetic parameters for the pseudo-second order kinetics were determined.

2013 ◽  
Vol 11 (1) ◽  
pp. 501-509
Author(s):  
Xueyong Zhou ◽  
Huifen Liu ◽  
Xianzhi Lu ◽  
Lili Shi ◽  
Jianchao Hao

Abstract Genetically modified crops, which produce insecticidal toxins from Bacillus thuringiensis (Bt), release the toxins into soils. Although the phenomena of persistence and degradation of Bt toxins have been documented, the effect of heavy metals on the fate of these toxins in soil has not yet been elucidated. The effect of Pb(II) on the adsorption behaviors of Bt toxin in brown and red soil was investigated. With the increase of Pb(II) concentration, the adsorption of Bt toxin in brown and red soil increased. The Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models gave better fitting to the experimental equilibrium data. Values of KL, KF and n increased but RL decreased with the increase of Pb(II) concentration, showing that the Pb(II) promoted the adsorption of Bt toxin in soils. The mean free energy of adsorption (E) ranged from 10.43 to 16.44 kJ mol−1 may correspond to a chemical ion-exchange mechanism. Three kinds of kinetic models, the pseudo-first-order, pseudo-second-order and intraparticle diffusion model, were used to test the experimental data. The results showed that the adsorption of Bt toxin by brown and red soil followed the pseudo-second-order kinetic model. The addition of Pb(II) during the adsorption led to a decrease of the desorption of Bt toxin from soils, indicating that the residual risk of Bt toxin may become larger if soil is polluted by lead.


2017 ◽  
Vol 23 (4) ◽  
pp. 447-456
Author(s):  
Rahim Shojaat ◽  
Afzal Karimi ◽  
Naghi Saadatjoo ◽  
Soheil Aber

In the present study, GOx/MnFe2O4/calcium alginate nano-composite was prepared by the trapping enzyme/nanoparticles in calcium alginate. The prepared absorbent was applied for decolorization of artificial dye wastewater of acid red 14 (AR14) by heterogeneous bio-Fenton system. Kinetic and isotherm studies were carried out. The decolorization of acid red 14 followed the Michaelis- Menten, pseudo-first order and pseudo-second order kinetic models. Good correlation coefficients were obtained by fitting the experimental data to Michaelis- Menten and pseudo-second order kinetic models. The adsorption isotherms were described by Langmuir, Freundlich and Temkin isotherms. Among the three isotherm models, the Freundlich model was fitted with the equilibrium data obtained from adsorption of AR14 onto MnFe2O4/calcium alginate; while Temkin isotherm gave the best correlation for adsorption on MnFe2O4 nanoparticles. The effect of various parameters such as initial pH of solution, initial dye concentration, and contact time on the adsorption of AR14 on MnFe2O4 and MnFe2O4/ /calcium alginate as well as dye enzymatic decomposition was studied. The decolorization of AR14 with initial concentration of 10 mg.L?1 by using GOx/ /MnFe2O4/calcium alginate was 60.17%.


2011 ◽  
Vol 236-238 ◽  
pp. 155-158
Author(s):  
Li Fang Zhang ◽  
Shu Juan Dai ◽  
Ying Ying Chen

In this study, Biosorption of hexavalent chromium ions from aqueous solution by using biomass ofAspergillus nigerwas investigated. Different parameters such as initial pH, biosorbent amount, contact time and temperature were explored. The biosorption of Cr (VI) ions was highly pH dependent and the optimum pH for biosorption of Cr (VI) ions was found to be 2.0. Biosorption capacity of Cr (VI) ions decreased with increased biosorbent dosage. The biosorption equilibrium was established in about 120min of contact time. Equilibrium uptake of Cr (VI) ions onto biomass increased from 12.57 mg/g at 20°C to 19.48 mg/g at 40 °C for 20mg/L Cr (VI) ions concentration. The biosorption process followed the pseudo-second order kinetic model and the correlation coefficients from the pseudo-second order model were all higher than 0.997 in all studied temperatures. These results suggest that the biomass ofAspergillus nigeris a promising biosorbent for removal of chromium (VI) ions from the wastewater.


2012 ◽  
Vol 77 (3) ◽  
pp. 393-405 ◽  
Author(s):  
Zavvar Mousavi ◽  
Abdorrahman Hosseinifar ◽  
Vahdat Jahed

Polyacrylamide (PAA), as an adsorbent was investigated for the removal of Ni(II) and Cr(III) metal ions from their synthesized aqueous solutions. The different variables affecting the adsorption capacity of the adsorbent such as contact time, pH of the sorption medium, metal ions concentration and temperature of the solution were investigated on a batch sorption basis. The adsorption equilibrium data fitted best with the Langmuir isotherm model. The maximum adsorption capacities found to be 84.03 and 32.67 mg g-1 of the polyacrylamide for Cr(III) and Ni(II), respectively. Three kinetic models including the pseudo-first-order, pseudo-second-order and intraparticle diffusion equations were selected to follow the adsorption process. Kinetic parameters such as rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was indicated that the adsorption of both ions onto polyacrylamide could be described by the pseudo-second-order kinetic model. Different thermodynamic parameters such as ?H?, ?S? and ?G? have also been evaluated and it has been found that the sorption was feasible, spontaneous and exothermic.


2014 ◽  
Vol 556-562 ◽  
pp. 286-289
Author(s):  
Li Fang Zhang ◽  
Chun Yang Jiang ◽  
Zhao Shao

In this study, Biosorption of Cr (VI) ions from aqueous solution by using biomass of Aspergillus niger was investigated. The effects of initial solution pH, biosorbent amount, contact time, initial concentration and temperature were explored. In batch experiments, the biosorption capacity of Cr (VI) decreased with increase in solution pH. The biosorption of Cr (VI) ions with pH range of 2.0-8.0 was found to be optimal at pH 2. Biosorption capacity of Cr (VI) ions decreased with increased biosorbent dosage. The bosorption capacity was increased with the increasing initial Cr (VI) concentration and temperature in studied range. The biosorption process followed the pseudo-second order kinetic model and the correlation coefficients from the pseudo-second order model were all higher than 0.9997 in all studied temperatures. These results suggest that the biomass of Aspergillus niger is a promising biosorbent for removal of Cr (VI) ions from the wastewater.


Author(s):  
Mohamed Nasser Sahmoune ◽  
Krim Louhab ◽  
Aissa Boukhiar

Dead streptomyces rimosus was found to be an effective biosorbent for the removal of chromium from industrial tanning effluents. A sorption level of 65 mg/g was observed at pH 4.8 while the precipitation effect augmented this value at a higher pH range. Chromium desorption increased with decreasing desorption agents pH (including HCl and H2SO4) to a maximum value of 95% at approximately zero pH. The biosorption data of trivalent chromium by streptomyces rimosus has been used for kinetic studies based on fractional power, Elovich, pseudo-first order and pseudo-second order rate expressions. The time-dependent Cr (III) biosorption data were well-described by a pseudo-second-order kinetic model. The intraparticle diffusion is not the rate-limiting step for the whole reaction. It was found that the biosorption equilibrium data fit well with the Langmuir model.


2016 ◽  
Vol 14 (1) ◽  
pp. 175-187 ◽  
Author(s):  
Lăcrămioara (Negrilă) Nemeş ◽  
Laura Bulgariu

AbstractMustard waste biomass was tested as a biosorbent for the removal of Pb(II), Zn(II) and Cd(II) from aqueous solution. This strategy may be a sustainable option for the utilization of such wastes. The influence of the most important operating parameters of the biosorption process was analyzed in batch experiments, and optimal conditions were found to include initial solution pH 5.5, 5.0 g biosorbent/L, 2 hours of contact time and high temperature. Kinetics analyses show that the maximum of biosorption was quickly reached and could be described by a pseudo-second order kinetic model. The equilibrium data were well fitted by the Langmuir model, and the highest values of maximum biosorption capacity were obtained with Pb(II), followed by Zn(II) and Cd(II). The thermodynamic parameters of the biosorption process (ΔG, ΔH and ΔS) were also evaluated from isotherms. The results of this study suggest that mustard waste biomass can be used for the removal of heavy metals from aqueous media.


2010 ◽  
Vol 5 (1) ◽  
Author(s):  
Hülya Karaca ◽  
Turgay Tay ◽  
Merih Kıvanç

The biosorption of lead ions (Pb2+) onto lyophilized fungus Aspergillus niveus was investigated in aqueous solutions in a batch system with respect to pH, contact time and initial concentration of the ions at 30 °C. The maximum adsorption capacity of lyophilized A. niveus was found to be 92.6 mg g−1 at pH 5.1 and the biosorption equilibrium was established about in 30 min. The adsorption capacity obtained is one of the highest value among those reported in the literature. The kinetic data were analyzed using the pseudo-first-order kinetic, pseudo-second-order kinetic, and intraparticle diffusion equations. Kinetic parameters, such as rate constants, equilibrium adsorption capacities, and related correlation coefficients for the kinetic models were calculated and discussed. It was found that the adsorption of lead ions onto lyophilized A. niveus biomass fit the pseudo-second-order kinetic model well. The Langmuir and Freundlich isotherm parameters for the lead ion adsorption were applied and the Langmuir model agreed better with the adsorption of lead ions onto lyophilized A. niveus.


2013 ◽  
Vol 78 (6) ◽  
pp. 811-826 ◽  
Author(s):  
M.H. Morcali ◽  
B. Zeytuncu ◽  
O. Yucel

Rice hull, a biomass waste product, and Lewatit TP 214, a thiosemicarbazide sorbent, were investigated as adsorbents for the adsorption of platinum (IV) ions from synthetically prepared dilute chloroplatinic acid solutions. The rice hull was characterized by Attenuated Total Reflection-Fourier transform infrared spectroscopy (ATR-FTIR). The effects of the different adsorption parameters, sorbent dosage, contact time, temperature and pH of solution on adsorption percentage were studied in detail on a batch sorption. The adsorption equilibrium data were best fitted with the Langmuir isotherm model. The maximum monolayer adsorption capacities, Qmax, at 25?C were found to be 42.02 and 33.22 mg g-1 for the rice hull and Lewatit TP 214, respectively. Thermodynamic calculations using the measured ?H?, ?S? and ?G? values indicate that the adsorption process was spontaneous and exothermic. The pseudo-first-order and pseudo-second-order rate equations were investigated; the adsorption of platinum ions for both sorbents was found to be described by the pseudo-second-order kinetic model. The kinetic rate, k2, using 30 mg sorbent at 25?C was found to be 0.0289 and 0.0039 g min-1 mg-1 for the rice hull and Lewatit TP 214, respectively. The results indicated that the rice hull can be effectively used for the removal of platinum from aqueous solution.


2012 ◽  
Vol 27 ◽  
pp. 11-18
Author(s):  
Timi Tarawou ◽  
Michael Horsfall

The adsorption of chromium (VI) ions from aqueous solution was studied using pure and carbonized fluted pumpkin waste biomass (FPWB). The kinetic data shows a pseudo-first-order mechanism with rate constants of 1.26 × 10-2 and 1.933 × 10-2 mg g-1 min-1 for the pure and carbonized FPWB, respectively. While the pseudo-second-order mechanism has rate constants of 0.93 × 10-1 and 1.33 × 10-1 mg g-1 min-1 for the pure and carbonized waste biomass respectively. The pseudo-second order kinetic model was found to be more suitable for describing the experimental data based on the correlation coefficient values (R2) of 0.9975 and 0.9994 obtained for pure waste biomass (PWB) and carbonized waste biomass (CWB), respectively. The results obtained from this study show that PWB and CWB have very high removal capacity for chromium (VI) from aqueous solution over a range of reaction conditions. Thus, fluted pumpkin waste biomass (Telfairia occidentalis Hook F) is a potential sorbent for the treatment of industrial effluents containing chromium (VI) contaminant.DOI: http://dx.doi.org/10.3126/jncs.v27i1.6436 J. Nepal Chem. Soc., Vol. 27, 2011 11-18Uploaded date: 16 July, 2012


Sign in / Sign up

Export Citation Format

Share Document