scholarly journals Comparison of passive and active radon measurement methods for personal occupational dose assessment

2016 ◽  
Vol 31 (1) ◽  
pp. 73-78
Author(s):  
Elham Hasanzadeh ◽  
Fereidoun Mianji ◽  
Asghar Sadighzadeh ◽  
Farhang Mizani

To compare the performance of the active short-term and passive long-term radon measurement methods, a study was carried out in several closed spaces, including a uranium mine in Iran. For the passive method, solid-state nuclear track detectors based on Lexan polycarbonate were utilized, for the active method, AlphaGUARD. The study focused on the correlation between the results obtained for estimating the average indoor radon concentrations and consequent personal occupational doses in various working places. The repeatability of each method was investigated, too. In addition, it was shown that the radon concentrations in different stations of the continually ventilated uranium mine were comparable to the ground floor laboratories or storage rooms (without continual ventilation) and lower than underground laboratories.

2020 ◽  
Vol 10 (7) ◽  
pp. 2341 ◽  
Author(s):  
Anita Ptiček Siročić ◽  
Davor Stanko ◽  
Nikola Sakač ◽  
Dragana Dogančić ◽  
Tomislav Trojko

(1) Background: Radon concentrations in the environment are generally very low. However, radon concentrations can be high indoors and can cause some serious health issues. The main source of indoor radon (homes, buildings and other residential objects) can be soil under the house, while other sources can be construction materials, groundwater and natural gas. Radon accumulates mainly in the lower levels of the buildings (especially low-ventilated underground levels and basements). (2) Methods: in this paper, we have measured the indoor radon concentrations at 15 locations in various objects (basements and ground floor/1st floor rooms) in the area of northern Croatia. (3) Results: the results show a higher concentration of radon in the basement area in comparison to values measured in the ground floor and first-floor rooms. The arithmetic mean (AM) and geometric mean (GM) of basement rooms were 70.9 ± 38.8 Bq/m3 and 61.2 ± 2.2 Bq/m3 compared to ground floor and first-floor rooms 42.5 ± 30.8 Bq/m3 and 32.8 ± 2.9 Bq/m3, respectively. (4) Conclusions: results obtained (AM and GM values) are within the maximal allowed values (300 Bq/m3) according to the Euroatom Directive. However, there are periods when maximum radon concentration exceeds 300 Bq/m3. Indoor radon concentrations vary with the occupancy of the rooms and it is evident that the ventilation has significant effect on the reduction of concentration.


2009 ◽  
Vol 24 (2) ◽  
pp. 94-99 ◽  
Author(s):  
Zora Zunic ◽  
Kevin Kelleher ◽  
Igor Celikovic ◽  
Predrag Ujic ◽  
Johan Paridaens ◽  
...  

Indoor radon retrospective concentrations were obtained and compared using two radon measurement methods. Both methods rely on the measurement of the long-lived radon progeny 210Pb, collected either on the surfaces (surface trap technique), most frequently glass, or in a volume trap, usually sponge from furniture (volume trap technique). These techniques have been used to retrospectively estimate radon gas concentrations that have existed in dwellings in the past. The work presented here compares the results provided by the surface trap technique devised at the University College of Dublin, Ireland, and the volume trap technique devised at the Scientific Research Center, Mol, Belgium. The field campaign was carried out by the research team of the ECE Laboratory of the Vinca Institute of Nuclear Sciences at the spa of Niska Banja, identified as a region of Serbia with a high indoor radon and ground water radium and radon content.


2020 ◽  
Vol 191 (2) ◽  
pp. 138-143
Author(s):  
G Venoso ◽  
M Ampollini ◽  
S Antignani ◽  
M Caprio ◽  
C Carpentieri ◽  
...  

Abstract Many international and national regulations on radon in workplaces, including the 2013/59/Euratom Council Directive, are based on the annual average of indoor radon concentration, assuming it is representative of the long-term average. However, a single annual radon concentration measurement does not reflect annual variations (i.e. year-to-year variations) of radon concentration in the same location. These variations, if not negligible, should be considered for an optimized implementation of regulations. Unfortunately, studies on annual variations in workplaces can be difficult and time-consuming and no data have been published on scientific journals on this issue. Therefore, we carried out a study to obtain a first evaluation of short-term annual variations in workplaces of a research institute in Rome (Italy). The radon concentration was measured in 120 rooms (mainly offices and laboratories) located in 23 buildings. In each room, two 1-year long measurements were performed, with an interval between the two measurements of up to 3 years. The results show variability between the two 1-year long measurements higher than the variability observed in a sample of dwellings in the same area. Further studies are required to confirm the results and to extend the study to other types of workplaces.


2011 ◽  
Vol 184 (2) ◽  
pp. 1085-1088 ◽  
Author(s):  
Ali Asghar Mowlavi ◽  
Maria Rosa Fornasier ◽  
Ailreza Binesh ◽  
Mario de Denaro

2001 ◽  
Vol 95 (2) ◽  
pp. 157-163 ◽  
Author(s):  
M. Zalewski ◽  
Z. Mnich ◽  
M. Karpi_ska ◽  
J. Kapala ◽  
P. Zalewski

Author(s):  
Б.С. Швецов ◽  
А.А. Миннеханов ◽  
А.А. Несмелов ◽  
М.Н. Мартышов ◽  
В.В. Рыльков ◽  
...  

The paper presents the results of a study at room temperature of the quantization effect of the conductivity of memristive structures based on the organic material poly-p-xylylene with resistive switching. Measurement methods are shown and a comparative analysis of the manifestation of the effect when switching structures to a high-resistance and low-resistance state is carried out. The possibility of setting stable quantum states of conductivity in memristive structures based on poly-p-xylylene is demonstrated. It is shown that some of these states have short-term, and some long-term stability. The results obtained open up new possibilities for using the quantization effect of conductivity in the implementation of neuromorphic systems.


2019 ◽  
Vol 12 (1) ◽  
pp. 85-103 ◽  
Author(s):  
D. V. Kononenko

During 2001–2017 more than 800 thousand records containing the results of measurements of radon concentration taken in 78 regions of Russia were accumulated in the Federal databank of radiation doses to the population of the Russian Federation. The paper presents the procedure and results of the first data analysis carried out to check the conformity of radon concentrations in the regions of Russia with the lognormal distribution and to calculate the parameters of these distributions. The procedure included verification and validation of data, plotting the frequency distribution histograms and Q-Q plots (normal probability plots) and the use of some methods of elimination of plateaus on the Q-Q plots and the distribution recovery. As a result, in 74 of 78 analyzed regions radon concentrations conform quite well or almost perfect to a lognormal distribution up to a certain level (this level ranged from 55 to 4915 Bq/m3). For all 78 regions geometric means with 95% confidence intervals, geometric standard deviations and arithmetic means were calculated. It should be noted that due to the fact that the Federal databank is a database containing results of measurements taken with different techniques (instant measurements, charcoal canisters, radon monitors and etched track detectors), the lognormal distributions for most regions are in fact contaminated distributions, and currently it is impossible to calculate the parameters of separate distributions that form the mixture. The results show that dose assessment based on arithmetic means could lead to an  overestimation of the doses from radon up to 2.1 times compared to that based on geometric means. The calculated medians can also be used for risk assessment purposes.


Author(s):  
Ji Park ◽  
Cheol Lee ◽  
Hyun Lee ◽  
Dae Kang

Long-term exposure to high radon concentration exerts pathological effects and elicits changes in respiratory function, increasing an individual’s risk of developing lung cancer. In health risk assessment of indoor radon, consideration of long-term exposure thereto is necessary to identify a relationship between indoor radon exposure and lung cancer. However, measuring long-term indoor radon concentration can be difficult, and a statistical model for predicting mean annual indoor radon concentrations may be readily applicable. We investigated the predictability of mean annual radon concentrations using national data on indoor radon concentrations throughout the spring, summer, fall, and winter seasons in Korea. Indoor radon concentrations in Korea were highest in the winter and lowest in the summer. We derived seasonal correction and seasonal adjustment factors for each season based on the method proposed by previous study. However, these factors may not be readily applicable unless measured in a specific season. In this paper, we separate seasonal correction factors for each month of the year (new correction factors) based on correlations between indoor radon and meteorological factors according to housing type. To evaluate the correction factors, we assessed differences between estimated and measured mean annual radon concentrations. Roughly 97% of the estimated values were within ±40 Bq/m3 of actual measured values in detached houses, and roughly 85–87% of the estimated values were within ±40 Bq/m3 of the measured values in other residences. In most cases, the seasonal correction factors and the new correction factors had slightly better agreement than the seasonal adjustment factor. For predicting mean annual radon concentrations, the seasonal correction factors or seasonal adjustment factors can be of use when actual measurements of indoor radon concentrations for a specific season are available. Otherwise, the new correction factors may be more readily applicable.


Sign in / Sign up

Export Citation Format

Share Document