scholarly journals Scanning electron microscopic examination of enamel surface after fixed orthodontic treatment: In-vivo study

2012 ◽  
Vol 140 (1-2) ◽  
pp. 22-28 ◽  
Author(s):  
Tijana Sessa ◽  
Jelena Civovic ◽  
Tina Pajevic ◽  
Jovana Juloski ◽  
Milos Beloica ◽  
...  

Introduction. Therapy with fixed orthodontic appliances starts with bracket bonding and ends with debonding of brackets, leaving enamel surface varied. Objective. The aim of this pilot study was to examine enamel surface before and after debonding of orthodontic brackets by the use of scanning electron microscopy (SEM). Methods. Epoxy replicas of four patients? premolars indicated for therapy with fixed orthodontic appliances were made and brackets were bonded to their teeth with a different adhesives (Enlight, No-mix, Fuji Ortho LC and Heliosit Orthodontic) (n=4). Two months later, brackets on premolars were debonded and amounts of adhesive left on the tooth surfaces and the bracket bases were evaluated with the adhesive remnant index (ARI). After resin removal, epoxy replicas were made and the surface of premolars was evaluated with the enamel surface index (ESI). All replicas of premolars (n=32) were prepared for SEM examination and compared under different magnifications. Tooth damage was estimated based on correlation between ARItooth and ESI. Results. Pearson?s ?2 test showed no significant differences between ARItooth and ARIbracket of four materials used. Nonparametric correlations showed significant differences between ARItooth and ARIbracket, ESI and ARItooth, and between ESI and ARIbracket. Increasing of ARItooth is followed with the descent of ARIbracket and the ascent of ESI. Multivariate regression analysis showed a significant correlation between ESI and ARItooth. Conclusion. Most bond failures took place at enamel-adhesive interface. ARItooth was a predictor to enamel surface damage. The type of material did not affect enamel surface damage.

1993 ◽  
Vol 39 (11) ◽  
pp. 1014-1021 ◽  
Author(s):  
L. Mihailova ◽  
N. Markova ◽  
T. Radoucheva ◽  
D. Veljanov ◽  
S. Radoevska

Listeria monocytogenes 4b and its forms without cell walls (L forms of a protoplastic type) were used to study in vivo interactions with host cells. Samples of peritoneal lavage fluid were obtained from rats intraperitoneally inoculated at intervals between 1 and 15 days after challenge, for scanning electron microscopic, bacteriological, biochemical, and cytometrical investigations. Scanning electron microscopic examination revealed continuous adhesion of L forms on the macrophage surface up to 15 days after inoculation. The persistence of the L forms within the peritoneal cavity was also shown bacteriologically at all sample times, while the parental bacterial forms were isolated from the peritoneal cavity up to 7 days after challenge. The total count of peritoneal exudative cells determined by automated flow peroxidase cytometry peaked on the 15th day in animals infected with parental forms, while in animals infected with L forms the peak was lower and the macrophage population was predominant. The glycolytic and acid phosphatase activity of peritoneal exudative cells was two times higher in rats infected with L forms as compared with rats infected with the L. monocytogenes parental forms on the 3rd day after challenge. An understanding of the nature of the interactions between L forms of L. monocytogenes and peritoneal exudative cells found in vivo could be used to establish the influence of L forms on host cellular defense mechanisms.Key words: Listeria monocytogenes, L forms, peritoneal exudative cells, electron microscopy.


1996 ◽  
Vol 23 (1) ◽  
pp. 43-47 ◽  
Author(s):  
C. A. Melrose ◽  
J. Appleton ◽  
B. B. J. Lovius

A clinical trial was conducted to investigate the development of caries lesions associated with fixed orthodontic appliance therapy. To introduce a cariogenic challenge on Sound buccal enamel surface in vivo, specially designed orthodontic bands were attached to premolars scheduled for extraction for orthodontic reasons. The bands were modified by having two metal wires (0·8 mm in diameter) welded to the inner surface of the band to produce a space for plaque accumulation similar to that occurring under loose orthodontic bands. The bands were cemented with a zinc phosphate cement (Tenet®) an left in situ for 4 weeks. Of 22 premolar teeth banded in eight different patients, eight showed definite white spot lesions, eight showed definite faint enamel opacities, and six showed no discernable lesions. Examination of definite white spot lesions by scanning electron microscopy revealed characteristic patterns of initial tissue destruction. Focal holes and an accentuation of the perikymata were observed affecting the enamel surface zone, an area previously considered to remain relatively intact during the development of a caries lesion. The superficial nature of the caries lesions observed and the rapidly of their formation is significant in the clinical management of decalcified areas forming beneath orthodontics bands.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Lijian Gao ◽  
Ce Zhang ◽  
Huanhuan Wang ◽  
Yiqun Zhang ◽  
Zhan Gao ◽  
...  

Objectives. To assess the impact of different guidewires on stent coating integrity in jailed wire technique (JWT) for bifurcation treatment. Background. JWT is commonly adopted to protect side branch in provisional one-stent strategy for coronary bifurcation lesions. However, this technique may cause defects in stent coatings. The degree of coating damage caused by different types of jailed wires remains unknown. Methods. A fluid model with a bifurcation was established to mimic the condition in vivo. One-stent strategy was performed with three types of guidewire (nonpolymer-jacketed wire, intermediate polymer-jacketed wire, and full polymer-jacketed wire) tested for JWT. Scanning electron microscopy (SEM) was used to evaluate stent coating integrity and wire structure. The degrees of coating defects were recorded as no, slight, moderate, and severe defects. Results. A total of 27 samples were tested. Analyses of SEM images showed a significant difference in the degree of coating damage among the three types of wire after the procedure of JWT ( P < 0.001 ). Nonpolymer-jacketed wire could inevitably cause a severe defect in stent coatings, while full polymer-jacketed wire caused the least coating damages. Besides, there were varying degrees of coil deformation in nonpolymer-jacketed wires, while no surface damage or jacket shearing was observed in full polymer-jacketed wires. Conclusions. Although nonpolymer-jacketed wire has long been recommended for JWT, our bench-side study suggests that full polymer-jacketed wire may be a better choice. Further clinical studies are needed to confirm our findings.


2016 ◽  
Vol 16 (3) ◽  
pp. 5-14
Author(s):  
M. Łępicka ◽  
M. Grądzka-Dahlke

Abstract The objective was to evaluate and assess the surface quality of fixed orthodontic appliances after intraoral usage for several months. Nine sets of orthodontic brackets by three different manufacturers and twelve archwires differing in chemical composition were analyzed in a scanning electron microscope with an energy dispersive X-ray analyzer for signs of corrosion. Obtained results showed that the majority of the evaluated appliances displayed no traces of corrosion. Machining or casting defects hardly ever act as the origins of corrosion processes. However, some samples displayed signs of corrosion of a galvanic and pitting nature. The authors claim, that despite the surface defects, most of the appliances were able to retain the desired corrosion resistance, although in some cases these flaws could act as the origin of corrosion processes.


Author(s):  
Loren Anderson ◽  
Pat Pizzo ◽  
Glen Haydon

Transmission electron microscopy of replicas has long been used to study the fracture surfaces of components which fail in service. Recently, the scanning electron microscope (SEM) has gained popularity because it allows direct examination of the fracture surface. However, the somewhat lower resolution of the SEM coupled with a restriction on the sample size has served to limit the use of this instrument in investigating in-service failures. It is the intent of this paper to show that scanning electron microscopic examination of conventional negative replicas can be a convenient and reliable technique for determining mode of failure.


1982 ◽  
Vol 28 (10) ◽  
pp. 1119-1126 ◽  
Author(s):  
M. Bastide ◽  
S. Jouvert ◽  
J.-M. Bastide

The early events in the interaction of two polyene (amphotericin B and nystatin) and five imidazole (clotrimazole, ketoconazole, miconazole, isoconazole, and econazole) antimycotics used at fungicidal concentrations with the surface of Candida albicans were studied by scanning electron microscopic examination of treated intact young yeast cells, treated spheroplasts, and spheroplasts liberated from treated young yeast cells. In all cases, treatment lasted 2 h. The polyenes passed through the yeast cell wall and interacted with the cytoplasmic membrane causing the spheroplasts to lose their characteristic spheric form and to liberate their contents. Clotrimazole caused the formation of numerous circular openings in the cytoplasmic membrane, but only when the agent was used to treat spheroplasts directly. Ketoconazole, miconazole, isoconazole, and econazole interacted with the cell wall causing formation of convolutions and wrinkles. The three imidazole derivatives that are structurally closely related, miconazole, isoconazole, and econazole, inhibited the enzyme-catalyzed release of spheroplasts from young yeast cells.


Sign in / Sign up

Export Citation Format

Share Document