scholarly journals Entropy generation in Poiseuille flow through a channel partially filled with a porous material

2015 ◽  
Vol 42 (1) ◽  
pp. 35-51 ◽  
Author(s):  
Vikas Kumar ◽  
Shalini Jain ◽  
Kalpna Sharma ◽  
Pooja Sharma

In the present paper, a theoretical analysis of entropy generation due to fully developed flow and heat transfer through a parallel plate channel partially filled with a porous medium under the effect of transverse magnetic field and radiation is presented. Both horizontal plates of the channel are kept at constant and equal temperature. An exact solution of governing equation for both porous and clear fluid regions has been obtained in closed form. The entropy generation number and the Bejan number are also calculated. The effects of various parameters such as magnetic field parameter, radiation parameter, Brinkman number, permeability parameter, ratios of viscosities and thermal conductivities are examined on velocity, temperature, entropy generation rate.

2020 ◽  
Vol 24 (2 Part B) ◽  
pp. 1207-1216 ◽  
Author(s):  
Sufian Munawar ◽  
Najma Saleem

This paper is aimed to investigate the entropy generation in a MHD convective flow of Eyring-Powell fluid through a mildly constricted channel. The constriction is assumed to be of regular or irregular shape and is presented inside the channel wall. Mathematical model is developed using the basic laws of conservation of mass, momentum, and energy. The governing equations are normalized using appropriate set of dimensionless variables and solutions are obtained by regular perturbation technique. The solutions are further used to calculate the entropy expression associated with the Second law of thermodynamics. The heat transfer characteristics, like, temperature, isotherms, entropy generation number entropy lines and the Bejan number are analyzed for the variation in magnetic field, shape parameter, and material constants. It is observed that entropy production is maximum in the narrow part of the channel. Moreover, entropy generation rate is higher for the regular parabolic shape as compared to irregular shapes of constriction.


Author(s):  
Murat Havzali ◽  
Guven Komurgoz ◽  
Aytac Arikoglu ◽  
Haci Ibrahim Keser ◽  
Ibrahim Ozkol

In this work, entropy generation due to laminar viscous incompressible flow of a conducting fluid in the presence of a transverse magnetic field in a porous inclined channel is investigated. Fully developed flow field is solved analytically whereas the solution of the energy equation is obtained by Finite Difference Method (FDM). The boundary conditions at the walls are considered to be constant heat flux. The influence of the applied magnetic field, porous medium and the viscous dissipation on velocity, temperature and entropy generation is examined. The dependence of flow and thermal characteristics on Peclet number (Pe), Brinkman number (Br), Darcy number (Da) and Hartman number (Ha) is analyzed through velocity and temperature distribution as well as Entropy generation number (Ns) and Bejan Number (Be) profiles.


2019 ◽  
Vol 97 (6) ◽  
pp. 678-691 ◽  
Author(s):  
Hang Xu ◽  
Ammarah Raees ◽  
Xiao-Hang Xu

In this paper, a fully-developed, immiscible nanofluid flow in a paralleled microchannel in the presence of a magnetic field is investigated. Buongiorno’s model is applied to describe the behaviors of the nanofluid flow. Different from most previous studies on microchannel flow, here the pressure term is considered as unknown, which makes the current model compatible with the commonly accepted channel flow models. The influences of various physical parameters on important physical quantities are given. The entropy generation analysis is performed. Variations of local and global entropy generations with the magnetic field parameter, the electric field, and the viscous dissipation parameter under various ratios of the thermophoresis parameter to the Brownian motion parameter are illustrated. The results indicate that the entropy generation rate strongly depends on the thermophoresis and the Brownian motion parameters. Their increase enhances the total irreversibility of entropy generation.


2017 ◽  
Vol 377 ◽  
pp. 42-61 ◽  
Author(s):  
Sanatan Das ◽  
Rabindra Nath Jana ◽  
Oluwole Daniel Makinde

In this investigation, a magnetohydrodynamic (MHD) flow of AlO /water nanofluid and Cu-AlO /water hybrid nanofluid through a porous channel is analyzed in the presence of a transverse magnetic field. An exact solution of the governing equations has been obtained in closed form. The entropy generation number and the Bejan number are also obtained. The influences of each of the governing parameters on velocity, temperature, entropy generation and Bejan number are displayed graphically and the physical aspects are discussed. In addition, a comparison of the heat transfer enhancement level due to the suspension of AlO and Cu nanoparticles in water as regular nanofluids and as hybrid Cu-AlO /water nanofluid is reported.


2019 ◽  
Vol 29 (10) ◽  
pp. 3795-3821
Author(s):  
Sumaira Qayyum ◽  
Muhammad Ijaz Khan ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi

Purpose The purpose of this study is to analyze the Entropy generation analysis and heat transport in three-dimensional flow between two stretchable disks. Joule heating and heat generation/absorption are incorporated in the thermal equation. Thermo-diffusion effect is also considered. Flow is conducting for time-dependent applied magnetic field. Induced magnetic field is not taken into consideration. Velocity and thermal slip conditions at both the disks are implemented. The flow problem is modeled by using Navier–Stokes equations with entropy generation rate and Bejan number. Design/methodology/approach Von Karman transformations are used to reduce the nonlinear governing expressions into an ordinary one and then tackled by homotopy analysis method for convergent series solutions. The nonlinear expressions for total entropy generation rate are obtained with appropriate transformations. The impacts of different flow variables on velocity, temperature, entropy generation rate and Bejan number are described graphically. Velocity, temperature and concentration gradients are discussed in the presence of flow variables. Findings Axial, radial and tangential velocity profiles show decreasing trend for larger values of velocity slip parameters. For a larger Brinkman number, the entropy generation increases, while a decreasing trend is noticed for Bejan number. Originality/value To the best of the authors’ knowledge, no such analyses have been reported in the literature.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Rama Subba Reddy Gorla

The fully developed mixed convection of non-Newtonian laminar flow through a vertical channel is investigated. The boundary conditions of uniform and unequal temperature prescribed at the channel walls are considered. The velocity and temperature fields are obtained by analytically solving the momentum and energy balance equations. The velocity and temperature distributions are used to calculate the entropy generation number (), the irreversibility ratio (Φ), and the Bejan number (Be) for several values of the viscous dissipation parameter (), the viscosity index (), and the appropriate dimensionless coordinates. The results show us the regions of high entropy generation.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
S. Das ◽  
S. Chakraborty ◽  
R. N. Jana

Purpose This study aims to expose the flow phenomena and entropy generation during a; magnetohydrodynamic (MHD) Poiseuille flow of water-based nanofluids (NFs) in a porous channel subject to hydrodynamic slip and convective heating boundary conditions. The flow caused by the uniform pressure; gradient between infinite parallel plates is considered steady and fully developed. The nanoparticles; namely, copper, alumina and titanium oxide are taken with pure water as the base fluid. Viscous dissipation and Joule heating impacts are also incorporated in this investigation. Design/methodology/approach The reduced governing equations are solved analytically in closed form. The physical insights of noteworthy parameters on the important flow quantities are demonstrated through graphs and analyzed elaborately. The thermodynamic analysis is performed by calculating entropy generation; rate and Bejan number. A graphical comparison between solutions corresponding to NFs and regular fluid in the channel is also provided. Findings The analysis of the results divulges that entropy generation minimization can be achieved by an appropriate combination of the geometrical and physical parameters of thermomechanical systems. It is reported that ascent in magnetic parameter number declines the velocity profiles, while the inverse pattern is witnessed with augmentation in hydrodynamic slip parameters. The temperature dissemination declines with the growth of Biot numbers. It is perceived that the entropy generation rate lessens with an upgrade in magnetic parameter, whereas the reverse trend of Bejan number is perceived with expansion in magnetic parameter and Biot number. The important contribution of the result is that the entropy generation rate is controlled with an appropriate composition of thermo-physical parameter values. Moreover, in the presence of a magnetic field and suction/injection at the channel walls, the shear stresses at the channel walls are reduced about two times. Practical implications In various industrial applications, minimizing entropy generation plays a significant role. Miniaturization of entropy is the utilization of the energy of thermal devices such as micro heat exchangers, micromixers, micropumps and cooling microelectromechanical devices. Originality/value An attentive review of the literature discloses that quite a few studies have been conducted on entropy generation analysis of a fully developed MHD Poiseuille flow of NFs through a permeable channel subject to the velocity slip and convective heating conditions at the walls.


2018 ◽  
Vol 23 (2) ◽  
pp. 413-428 ◽  
Author(s):  
S. Jain ◽  
S. Bohra

Abstract In the present study, we have investigated entropy generation on a magnetohydrodynamic fluid flow and heat transfer over a stretching cylinder with a porous medium in slip flow regime. A uniform heat source and radiation is also considered. Similarity transformation has been applied for making an ordinary differential equation from nonlinear governing partial differential equations. The numerical solution for the set of nonlinear ordinary differential equations has been obtained by using the fourth-order Runge-Kutta scheme together with the shooting method. The effects of pertinent parameters such as the magnetic field parameter, permeability parameter, slip parameter, Prandtl number and radiation parameter on the fluid velocity distribution, temperature distribution, entropy generation and Bejan number are discussed graphically.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
G. Nagaraju ◽  
Srinivas Jangili ◽  
J. V. Ramana Murthy ◽  
O. A. Bég ◽  
A. Kadir

The present paper investigates analytically the two-dimensional heat transfer and entropy generation characteristics of axisymmetric, incompressible viscous fluid flow in a horizontal circular pipe. The flow is subjected to an externally applied uniform suction across the wall in the normal direction and a constant magnetic field. Constant wall temperature is considered as the thermal boundary condition. The reduced Navier–Stokes equations in a cylindrical coordinate system are solved to obtain the velocity and temperature distributions. The velocity distributions are expressed in terms of stream function and the solution is obtained using the homotopy analysis method (HAM). Validation with earlier nonmagnetic solutions in the literature is incorporated. The effects of various parameters on axial and radial velocities, temperature, axial and radial entropy generation numbers, and axial and radial Bejan numbers are presented graphically and interpreted at length. Streamlines, isotherms, pressure, entropy generation number, and Bejan number contours are also visualized. Increasing magnetic body force parameter shifts the peak of the velocity curve near to the axis, whereas it accelerates the radial flow. The study is relevant to thermodynamic optimization of magnetic blood flows and electromagnetic industrial flows featuring heat transfer.


2018 ◽  
Vol 387 ◽  
pp. 244-259 ◽  
Author(s):  
Sanatan Das ◽  
Subhajit Chakraborty ◽  
Oluwole Daniel Makinde ◽  
Rabindra Nath Jana

The present study is related to entropy analysis during magnetohydrodynamic (MHD) boundary layer flow of a viscous incompressible electrically conducting fluid past a stretching cylinder with convective heating in the presence of a transverse magnetic field. The governing boundary layer equations in cylindrical form are simplified by means of appropriate similarity transformations. Numerical solutions with high precision are obtained using Runge-Kutta fourth order scheme with eminent shooting technique. The effects of the pertinent parameters on the fluid velocity, temperature, entropy generation number, Bejan number as well as the shear stress at the surface of the cylinder are discussed graphically and quantitatively. It is examined that due to the presence of magnetic field, entropy generation can be controlled and reduced. Bejan number is plotted to present a comparative analysis of entropy generation due to heat transfer and fluid friction. It is found that Bejan number is an increasing function of Biot number.


Sign in / Sign up

Export Citation Format

Share Document