scholarly journals Investigating the impacts of included angles on flow and heat transfer in cross-corrugated triangular ducts with field synergy principle

2013 ◽  
Vol 17 (3) ◽  
pp. 823-832 ◽  
Author(s):  
Zuoyi Chen ◽  
Lizhi Zhang ◽  
Han Song

Included angles (?) have vital effect on the flow and heat transfer in cross-corrugated triangular ducts. The friction factor and Nusselt number were estimated at different Reynolds numbers from both experiments and simulations. Results show that the flow in the duck with ?=90 has the largest friction factor and Nusselt number. However, the included angle influences the flow and heat transfer in cross-corrugated triangular ducts in different ways. The field synergy principle was used to explore the mechanism of the different impacts of the included angle. Results show that the flow in the cross-corrugated triangular duct with ?=90o has the smallest domain averaged included angle (?m), which implies the best synergy performance. The results of the field synergy principle were also validated by analyzing the performance evaluation criterion and studying the velocity vector and temperature distributions.

2011 ◽  
Vol 134 (2) ◽  
Author(s):  
Jibing Lan ◽  
Yonghui Xie ◽  
Di Zhang

Flow characteristics and heat transfer performances in a rectangular microchannel with dimples/protrusions are studied numerically in this research. The height and the width of the microchannel is 200 μm and 50 μm, respectively. The dimple/protrusion diameter is 100 μm, and the depth is 20 μm. The effects of Reynolds number, streamwise pitch, and arrangement pattern are examined. The numerical simulations are conducted using water as the coolant with the Reynolds number ranging from 100 to 900. The results show that dimple/protrusion technique in mcirochannel has the potential to provide heat transfer enhancement with low pressure penalty. The normalized Nusselt number is within the range from 1.12 to 4.77, and the corresponding normalized friction factor is within the range from 0.94 to 2.03. The thermal performance values show that the dimple + protrusion cases perform better than the dimple + smooth cases. The flow characteristics of the dimples/protrusions in microchannel are similar to those in conventional channel. Furthermore, from the viewpoint of energy saving, dimples/protrusions in microchannel behave better than those in conventional channel. Also from the viewpoint of field synergy principle, the synergy of the dimple + protrusion cases are much better than the dimple + smooth cases. Moreover, the synergy becomes worse with the increase in the Reynolds number and decrease in the streamwise pitch.


2014 ◽  
Vol 18 (4) ◽  
pp. 1145-1158 ◽  
Author(s):  
Kamil Arslan

In this study, steady-state turbulent forced flow and heat transfer in a horizontal smooth semi-circular cross-sectioned duct was numerically investigated. The study was carried out in the turbulent flow condition where Reynolds numbers range from 1?104 to 5.5?104. Flow is hydrodynamically and thermally developing (simultaneously developing flow) under uniform surface heat flux with uniform peripheral wall heat flux (H2) boundary condition on the duct?s wall. A commercial CFD program, Ansys Fluent 12.1, with different turbulent models was used to carry out the numerical study. Different suitable turbulence models for fully turbulent flow (k-? Standard, k-? Realizable, k-? RNG, k-? Standard and k-? SST) were used in this study. The results have shown that as the Reynolds number increases Nusselt number increases but Darcy friction factor decreases. Based on the present numerical solutions, new engineering correlations were presented for the average Nusselt number and average Darcy friction factor. The numerical results for different turbulence models were compared with each other and similar experimental investigations carried out in the literature. It is obtained that, k-? Standard, k-? Realizable and k-? RNG turbulence models are the most suitable turbulence models for this investigation. Isovel contours of velocity magnitude and temperature distribution for different Reynolds numbers, turbulence models and axial stations in the duct were presented graphically. Also, local heat transfer coefficient and local Darcy friction factor as function of dimensionless position along the duct were obtained in this investigation.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Curtis K. Stimpson ◽  
Jacob C. Snyder ◽  
Karen A. Thole ◽  
Dominic Mongillo

Recent technological advances in the field of additive manufacturing (AM), particularly with direct metal laser sintering (DMLS), have increased the potential for building gas turbine components with AM. Using the DMLS for turbine components broadens the design space and allows for increasingly small and complex geometries to be fabricated with little increase in time or cost. Challenges arise when attempting to evaluate the advantages of the DMLS for specific applications, particularly because of how little is known regarding the effects of surface roughness. This paper presents pressure drop and heat transfer results of flow through small, as produced channels that have been manufactured using the DMLS in an effort to better understand roughness. Ten different coupons made with the DMLS all having multiple rectangular channels were evaluated in this study. Measurements were collected at various flow conditions and reduced to a friction factor and a Nusselt number. Results showed significant augmentation of these parameters compared to smooth channels, particularly with the friction factor for minichannels with small hydraulic diameters. However, augmentation of Nusselt number did not increase proportionally with the augmentation of the friction factor.


Author(s):  
Dean Ferley ◽  
Scott J. Ormiston

Numerical analysis of steady, two-dimensional, laminar forced convection in corrugated-plate channels is performed using a commercial CFD code: ANSYS CFX. The flow domain consists of six modules in each of three wall corrugations: sinusoidal-wavy-shaped (SWS), rounded-ellipse-shaped (RES), and rounded-vee-shaped (RVS). One ratio of minimum-to-maximum plate spacings and one module length-to-height ratio is considered. Fluid flow and heat transfer are repeating in the modules and the results are examined in a typical module in the fully-developed region for Reynolds numbers in the range of 25 to 300 for Prandtl numbers of 0.7 (air), 2.29 (water), and 34.6 (ethylene glycol). The RES corrugation produced the highest peak value of local Nusselt number as well as the highest friction factor. The SWS corrugation produced the highest average Nusselt number, except at a Prandtl number of 34.6 at higher Reynolds number where the RES corrugation had the highest value. The RVS corrugation had the lowest friction factor for the geometric configuration considered. The highest heat transfer rate per unit pumping power was found at the highest Prandtl number for the RES corrugation.


2021 ◽  
pp. 183-183
Author(s):  
Sendogan Karagoz ◽  
Semih Erzincanli ◽  
Orhan Yildirim ◽  
Ilker Firat ◽  
Mehmet Kaya ◽  
...  

This experimental study deals with the heat transfer and friction effects of sinusoidal part turbulators for single-phase flows occurring in a circular shaped pipe. Turbulators with three different radius values are placed in the pipe to make the flow turbulent. In this way, changes in Nusselt number and friction coefficient are examined. As a result of the experiments made with Reynolds numbers in the range of 6614-20710, the increase rates of the Nusselt numbers of turbulators with 20 mm, 110 mm and 220 mm radius compared to the empty pipe were obtained as 153.49%, 85.36%, and 52.09%, respectively. As a result of the decrease in the radius, there was an increase in the Nusselt number and the friction factor. Parallel to the Nusselt number, the highest friction factor was obtained in the smallest radius turbulator. It was found that the thermal enhancement factors of 110 mm and 220 mm radius turbulators increased by 179.54% and 132.95%, respectively, compared to the 20 mm radius turbulator. Similarly, it was determined that the thermal enhancement factor of the 110 mm radius turbulator increased by 20% compared to the 220 mm radius turbulator.


2020 ◽  
Vol 184 ◽  
pp. 01027
Author(s):  
B Ch Nookaraju

Computational investigation of steady, two-dimensional heat transfer attributes for forced convective chaotic discharge in a vertical channel of cluster of heated rectangular sections is performed. The discharge is deemed to be periodic fully developed so that the issue is determined for two extending zone and explanation is developed to more number of sections. This structure reproduces the driven convective cooling of a cluster of engraved circuit panels confronted in computerize belongings. Two mathematical statements for k- ℇ model is used for modeling for the turbulence and the finite volume methodology is used. Computations are performed for Reynolds numbers ranging from 6000-12000, Prandtl number of 0.7 and various geometric parameters characterizing the problem. As Reynolds number steps up the Nusselt Number increases. Re-circulations undermine the local Nusselt number when matched with comparing variation from a identical plate. The velocity contours, temperature distributions, variation of turbulent kinetic energy and kinetic energy dissipation rates in a vertical channel is found. With the blocks in the cluster, pressure fall is higher in resemblance to plane duct.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Wei Du ◽  
Lei Luo ◽  
Songtao Wang ◽  
Jian Liu ◽  
Bengt Sunden

Abstract Heat transfer characteristics in a latticework duct with various sidewalls are numerically investigated. The crossing angle is 90 deg and the number of subchannels is eleven on both the pressure side and suction side for each latticework duct. The thickness of the ribs is 8 mm and the distance between adjacent ribs is 24 mm. The investigation is conducted for various Reynolds numbers (11,000 to 55,000) and six different sidewalls. Flow structure, pressure drop, and heat transfer characteristics are analyzed. Results revealed that the sidewall has significant effects on heat transfer and flow structure. The triangle-shaped sidewall provides the highest Nusselt number accompanied by the highest friction factor. The sidewall with a slot shows the lowest friction factor and Nusselt number. An increased slot width decreased the Nusselt number and friction factor simultaneously.


Author(s):  
Lin Tian ◽  
Wei Bai ◽  
Shanhu Xue ◽  
Zipeng Huang ◽  
Qiuwang Wang

The unsteady turbulent flow and heat transfer in rectangular channel with periodic longitudinal vortex generators on up and bottom walls are investigated by standardized k-ε two equation turbulent model combined with standardized wall function which has been validated by steady experimental data. Influence of varying frequency and amplitude of inlet velocity varying by sine function on heat transfer and friction factor are discussed. It is found that parameters such as Tout, Tf, Tw, Nusselt number and the friction factor f vary with time periodically, phase difference occurred compared with inlet velocity. Pulsating frequency has little impact on time averaged Nusselt number. However, when amplitude increases from 0.2us to 0.8us, the heat transfer rate is augmented by about 4%. Furthermore, a critical frequency has been captured when amplitude equals to 0.8us for the channel studied. The current study will deepen understanding of unsteady flow in plate fuel assembly, which can be used in small-scale reactors.


2000 ◽  
Vol 123 (2) ◽  
pp. 347-358 ◽  
Author(s):  
P. Bagchi ◽  
M. Y. Ha ◽  
S. Balachandar

Direct numerical solution for flow and heat transfer past a sphere in a uniform flow is obtained using an accurate and efficient Fourier-Chebyshev spectral collocation method for Reynolds numbers up to 500. We investigate the flow and temperature fields over a range of Reynolds numbers, showing steady and axisymmetric flow when the Reynolds number is less than 210, steady and nonaxisymmetric flow without vortex shedding when the Reynolds number is between 210 and 270, and unsteady three-dimensional flow with vortex shedding when the Reynolds number is above 270. Results from three-dimensional simulation are compared with the corresponding axisymmetric simulations for Re>210 in order to see the effect of unsteadiness and three-dimensionality on heat transfer past a sphere. The local Nusselt number distribution obtained from the 3D simulation shows big differences in the wake region compared with axisymmetric one, when there exists strong vortex shedding in the wake. But the differences in surface-average Nusselt number between axisymmetric and three-dimensional simulations are small owing to the smaller surface area associated with the base region. The shedding process is observed to be dominantly one-sided and as a result axisymmetry of the surface heat transfer is broken even after a time-average. The one-sided shedding also results in a time-averaged mean lift force on the sphere.


Sign in / Sign up

Export Citation Format

Share Document