scholarly journals The effect of thermal radiation, heat generation and suction/injection on the mechanical properties of unsteady continuous moving cylinder in a nanofluid

2015 ◽  
Vol 19 (5) ◽  
pp. 1591-1601 ◽  
Author(s):  
El-Sayed El-Bashbeshy ◽  
Tarek Emam ◽  
Mohamed Abdel-Wahed

The effect of thermal radiation, heat generation, suction/injection, nanoparticles type, and nanoparticle volume fraction on heat transfer characteristics and the mechanical properties of unsteady moving cylinder embedded into cooling medium consist of water with Cu; Ag or Al2O3 particles are studied. The governing time dependent boundary layer equations are transformed to ordinary differential equations containing unsteadiness parameter, thermal radiation parameter, heat source parameter, suction/injection parameter, curvature parameter, nanoparticle volume fraction and Prandlt number. These equations are solved numerically. The velocity and Temperature profiles within the boundary layer are plotted and discussed in details for various values of the different parameters. Also the effects of the cooling medium and the external thermal forces on the mechanical properties of the cylinder are investigated.

2017 ◽  
Vol 34 (7) ◽  
pp. 2330-2343 ◽  
Author(s):  
Syed Tauseef Mohyud-Din ◽  
Muhammad Usman ◽  
Kamran Afaq ◽  
Muhammad Hamid ◽  
Wei Wang

Purpose The purpose of this study is to analyze the effects of carbon nanotubes (CNTs) in the Marangoni convection boundary layer viscous fluid flow. The analysis and formulation for both types of CNTs, namely, single-walled (SWCNTs) and multi-walled (MWCNTs), are described. The influence of thermal radiation effect assumed in the form of energy expression. Design/methodology/approach Appropriate transformations reduced the partial differential systems to a set of nonlinear ordinary differential equations (ODEs). The obtained nonlinear ODE set is solved via the least squares method. A detailed comparison between outcomes obtained by the least squares method, RK-4 and already published work is available. Findings Nusselt number was analyzed and found to be more effective for nanoparticle volume fraction and larger radiation parameters. Additionally, the error and convergence analysis for the least squares method was presented to show the efficiency of the said algorithm. Originality/value The results reveal that velocity is a decreasing function of suction for both CNTs. While enhancing the nanoparticle volume fraction, an increase for both thermal boundary layer thickness and temperature was attained. The radiation parameter has an increasing function as temperature. Velocity behavior is the same for nanoparticle volume fraction and suction. It was observed that velocity is less in SWCNTs as compared to MWCNTs.


AIP Advances ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 075122 ◽  
Author(s):  
Saeed Ehsan Awan ◽  
Muhammad Awais ◽  
Saeed Ur Rehman ◽  
Shahab Ahmad Niazi ◽  
Muhammad Asif Zahoor Raja

2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Md. Jashim Uddin ◽  
W. A. Khan ◽  
A. I. Md. Ismail

Steady viscous incompressible MHD laminar boundary layer slip flow of an electrically conducting nanofluid over a convectively heated permeable moving linearly stretching sheet has been investigated numerically. The effects of Brownian motion, thermophoresis, magnetic field, and heat generation/absorption are included in the nanofluid model. The similarity transformations for the governing equations are developed. The effects of the pertinent parameters, Lewis number, magnetic field, Brownian motion, heat generation, thermophoretic, momentum slip and Biot number on the flow field, temperature, skin friction factor, heat transfer rate, and nanoparticle, volume fraction rate are displayed in both graphical and tabular forms. Comparisons of analytical (for special cases) and numerical solutions with the existing results in the literature are made and is found a close agreement, that supports the validity of the present analysis and the accuracy of our numerical computations. Results for the reduced Nusselt and Sherwood numbers are provided in tabular and graphical forms for various values of the flow controlling parameters which govern the momentum, energy, and the nanoparticle volume fraction transport in the MHD boundary layer.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Titilayo Morenike Agbaje ◽  
Gilbert Makanda

The investigation of the numerical solution of the laminar boundary layer flow along with a moving cylinder with heat generation, thermal radiation, and surface slip effect is carried out. The fluid mathematical model developed from the Navier-Stokes equations resulted in a system of partial differential equations which were then solved by the multidomain bivariate spectral quasilinearization method (MD-BSQLM). The results show that increasing the velocity slip factor results in an enhanced increase in velocity and temperature profiles. Increasing the heat generation parameter increases temperature profiles; increasing the radiation parameter and the Eckert numbers both increase the temperature profiles. The concentration profiles decrease with increasing radial coordinate. Increasing the Brownian motion and the thermophoresis parameter both destabilizes the concentration profiles. Increasing the Schmidt number reduces temperature profiles. The effect of increasing selected parameters: the velocity slip, Brownian motion, and the radiation parameter on all residual errors show that these errors do not deteriorate. This shows that the MD-BSQLM is very accurate and robust. The method was compared with similar results in the literature and was found to be in excellent agreement.


2019 ◽  
Vol 24 (3) ◽  
pp. 75 ◽  
Author(s):  
Musawenkhosi Mkhatshwa ◽  
Sandile Motsa ◽  
Precious Sibanda

An efficient overlapping multi-domain spectral method is used in the analysis of conjugate problems of heat conduction in solid walls coupled with laminar magnetohydrodynamic (MHD) free convective boundary layer flow of copper (Cu) water and silver (Ag) water nanofluids over vertical and horizontal flat plates. The combined effects of heat generation and thermal radiation on the flow has been analyzed by imposing a magnetic field along the direction of the flow to control the motion of electrically conducting fluid in nanoscale systems. We have assumed that the nanoparticle volume fraction at the wall may be actively controlled. The dimensionless flow equations are solved numerically using an overlapping multi-domain bivariate spectral quasilinearisation method. The effects of relevant parameters on the fluid properties are shown graphically and discussed in detail. Furthermore, the variations of the skin friction coefficient, surface temperature and the rate of heat transfer are shown in graphs and tables. The findings show that the surface temperature is enhanced due to the presence of nanoparticles in the base fluid and the inclusion of the thermal radiation, heat generation and transverse magnetic field in the system. An increase in the nanoparticle volume fraction, heat generation, thermal radiation, and magnetic field parameter enhances the nanofluid velocity and temperature while reducing the heat transfer rate. The results also indicate that the Ag–water nanofluid has higher skin friction and surface temperature than the Cu–water nanofluid, while the opposite behaviour is observed in the case of the rate of heat transfer. The computed numerical results are compared with previously published results and found to be in good agreement.


Author(s):  
C. Sridevi ◽  
A. Sailakumari

Background: In this paper, transient two-dimensional laminar boundary layer viscous incompressible free convective flow of water based nanofluid with carbon nanotubes (CNTs) past a moving vertical cylinder with variable surface temperature is studied numerically in the presence of thermal radiation and heat generation. Methods: The prevailing partial differential equations which model the flow with initial and boundary conditions are solved by implicit finite difference method of Crank Nicolson type which is unconditionally stable and convergent. Results: Influence of Grashof number (Gr), nanoparticle volume fraction ( ), heat generation parameter (Q), temperature exponent (m), radiation parameter (N) and time (t) on velocity and temperature profiles are sketched graphically and elaborated comprehensively. Conclusion: Analysis of Nusselt number and Skin friction coefficient are also discussed numerically for both single wall carbon nanotubes (SWCNTs) and multi wall carbon nanotubes (MWCNTs).


2021 ◽  
Author(s):  
Muhammad Yasir ◽  
Masood Khan ◽  
Awais Ahmed ◽  
Malik Zaka Ullah

Abstract In this work, an analysis is presented for the unsteady axisymmetric flow of Oldroyd-B nanofluid generated by an impermeable stretching cylinder with heat and mass transport under the influence of heat generation/absorption, thermal radiation and first-order chemical reaction. Additionally, thermal and solutal performances of nanofluid are studied using an interpretation of the well-known Buongiorno's model, which helps us to determine the attractive characteristics of Brownian motion and thermophoretic diffusion. Firstly, the governing unsteady boundary layer equation's (PDEs) are established and then converted into highly non-linear ordinary differential equations (ODEs) by using the suitable similarity transformations. For the governing non-linear ordinary differential equations, numerical integration in domain [0, ∞) is carried out using the BVP Midrich scheme in Maple software. For the velocity, temperature and concentration distributions, reliable results are prepared for different physical flow constraints. According to the results, for increasing values of Deborah numbers, the temperature and concentration distribution are higher in terms of relaxation time while these are decline in terms of retardation time. Moreover, thermal radiation and heat generation/absorption are increased the temperature distribution and corresponding boundary layer thickness. With previously stated numerical values, the acquired solutions have an excellent accuracy.


Sign in / Sign up

Export Citation Format

Share Document