scholarly journals Thermal decomposition and oxidation of coal processing waste

2018 ◽  
Vol 22 (2) ◽  
pp. 1099-1110 ◽  
Author(s):  
Ksenia Vershinina ◽  
Sergey Lyrschikov ◽  
Pavel Strizhak

To expand the database of kinetic parameters used for modeling the ignition of coals and their processing waste, promising coal-water slurry and coal-water slurry containing petrochemicals, studies have been performed on an experimental set-up using thermal gravimetric analysis. The research into coals of various ranks (flame, gas, coking, low-caking, and non-baking) and their processing waste (filter cakes) has yielded the decomposition parameters of the organic matter of coal and the formation of volatile substances as well as the oxidation parameters of the coke residue of all the coals and filter cakes under study. The studies cover the temperature range of the burning processes: 450-1300 K (for low-, medium-, and high-temperature burning modes). We have ascertained the dependence of kinetic parameters (pre-exponential factor and activation energy) describing the thermal decomposition of the organic matter of coal on the rank of coals and filter cakes. The findings show that the kinetic parameters describing the thermal decomposition of the organic matter of coal and its processing waste are practically the same. The thermokinetic parameters of coke residue oxidation are close for all the coals under study but they differ significantly for coke residue of filter cakes. The values of thermokinetic parameters obtained in the research are necessary to devise adequate physical and mathematical models and perform numerical studies (for mathematical modeling) of fuel slurry combustion processes in the combustion chambers of power plants.

Author(s):  
Zhixiao Zhang ◽  
Xintian Zhao ◽  
Eilhann Kwon ◽  
Marco J. Castaldi

As a result of electronic industry development in China, significant amount of Printed Circuit Board (PCBs) wastes are generated. The thermal decomposition via combustion or pyrolysis/gasification is considered to be a feasible disposal way for PCBs. To understand the consequences of pyrolysis, gasification or combustion in WTE facilities, thermo-gravimetric analysis (TGA) has been carried to characterize the thermal decomposition mechanisms and extract the kinetic parameters in various atmospheres (N2, CO2 and air) to simulate different regions in WTE applications. TGA tests in N2 atmosphere showed there was only one significant reaction in the low temperature range of 270∼350°C, which was the decomposition of epoxy resin in PCBs. The behavior in CO2 atmosphere was similar with that in N2. However, the PCBs oxidation process in air atmosphere showed two thermal decomposition steps. One was the thermal decomposition similar to the volatilization in N2 atmosphere and the second step showed oxidation behavior. Some pre-processing was investigated to explore possible benefits in WTE combustion. PCBs waste was pyrolyzed using a microwave tubular furnace. The liquid product were collected and then identified by means of gas chromatography–mass spectrometry (GC–MS). Most of the Br contained in PCBs was released into non-condensable gas in the form of HBr. The liquid product contained a large amount of phenolic compounds, bisphenol A and other aromatic compounds that can be used to produce related chemical products or used in WTE facilities. The experimental results including the thermal kinetic parameters and microwave induced pyrolysis indicate the complex mechanisms that take place during the pyrolysis of PCBs wastes.


2020 ◽  
Vol 10 (7) ◽  
pp. 2460
Author(s):  
Ksenia Vershinina ◽  
Vadim Dorokhov ◽  
Daniil Romanov ◽  
Galina Nyashina ◽  
Geniy Kuznetsov

This paper presents the results of analyzing the efficiency of the following five fuel types: dry coal, wet coal processing waste, coal–water slurry, and two waste-derived slurries. In the calculations, we employed 16 criteria related to the energy industry, economy, social aspects, safety at plants, and environmental protection. We used the experimental data, obtained from the combustion of the fuels under study at three heating temperatures (700 °C, 800 °C, and 900 °C). Three countries were analyzed, where all of them have a high share of using fossil fuels in the energy industry: Japan, China, and Russia. The total performance indicator was calculated using three multiple-criteria decision analysis techniques (weighted sum method, weighted product method, and analytic hierarchy process). The choice of weight coefficients was confirmed for each method. We found that coal and coal–water slurry had the lowest integral efficiency indicators (0.016–0.535 and 0.045–0.566, respectively). The maximum effect was achieved when using waste-derived slurry with used turbine oil (0.190–0.800) and coal processing waste (0.535–0.907). There were, on average, 3%–60% differences in the integral efficiency indicator for the same fuel in different countries. The difference in the efficiency indicator of the same fuel in different countries was on average 3%–60%; with changes in temperature, the difference in efficiency was 5%–20%; and when changing the calculation procedure, the difference was 10%–90%.


2021 ◽  
Vol 204 ◽  
pp. 108751
Author(s):  
Evgeniya Leushina ◽  
Polina Mikhaylova ◽  
Elena Kozlova ◽  
Veniamin Polyakov ◽  
Nikita Morozov ◽  
...  

2014 ◽  
Vol 983 ◽  
pp. 190-193
Author(s):  
Cai Yun Sun ◽  
Yong Li Yang ◽  
Ming Gao

Wood has been treated with amino resins and amino resins modified with phosphoric acid to impart flame retardancy. The thermal degradation of samples has been studied by thermogravimetry (TG) in air. From the resulting data, kinetic parameters for different stages of thermal degradation are obtained following the method of Broido. For the decomposition of wood and flame retardant wood, the activation energy is found to decrease from 122 to 72 kJmol-1.


2017 ◽  
Vol 142 ◽  
pp. 1089-1094 ◽  
Author(s):  
Yan Gong ◽  
Guangsuo Yu ◽  
Qinghua Guo ◽  
Yifei Wang ◽  
Xueli Chen ◽  
...  

1977 ◽  
Vol 55 (20) ◽  
pp. 3596-3601 ◽  
Author(s):  
Michael T. H. Liu ◽  
Barry M. Jennings

The thermal decomposition of phenyl-n-butyldiazirine and of phenylmethyldiazirine in DMSO and in HOAc have been investigated over the temperature range 80–130 °C. The intermediate diazo compounds, 1-phenyl-1-diazopentane and 1-phenyldiazoethane respectively have been detected and isolated. The decomposition of phenyl-n-butyldiazirine and the subsequent decomposition of its product, 1-phenyl-1-diazopentane, are an illustration of consecutive reactions. The kinetic parameters for the isomerization and decomposition reactions have been determined. The isomerization of phenylmethyldiazirine to 1-phenyldiazoethane is first order and probably unimolecular but the kinetics for the subsequent reactions of 1-phenyldiazoethane are complicated by several competing rate processes.


Sign in / Sign up

Export Citation Format

Share Document