scholarly journals Experimental study on a high concentration photovoltaic/thermal system with plane mirrors array

2018 ◽  
Vol 22 (Suppl. 2) ◽  
pp. 517-525
Author(s):  
Haifei Chen ◽  
Jie Yang ◽  
Jie Ji ◽  
Wenzhu Huang ◽  
Gang Pei ◽  
...  

A high concentration photovoltaic/thermal system based on plane mirrors array has been developed and analyzed. It is found that the system with plane mirrors array not only can reduce the cost but also achieve a uniform illumination and adjustable concentration ratios. The system produces both electrical and thermal energy, with the electrical efficiency above 22% and the thermal efficiency above 47%. The experimental results show that the temperature coefficient of open circuit voltage in this photovoltaic module is around ?0.12 V/?C. Moreover, when the concentration ratio varies between 200 and 450, the decrease of electrical efficiency with the temperature is 0.08% per?C.

Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1902 ◽  
Author(s):  
Asmaa Ahmed ◽  
Katie Shanks ◽  
Senthilarasu Sundaram ◽  
Tapas Kumar Mallick

Concentrator photovoltaics have several advantages over flat plate systems. However, the increase in solar concentration usually leads to an increase in the solar cell temperature, which decreases the performance of the system. Therefore, in this paper, we investigate the performance and temperature limits of a high concentration photovoltaic Thermal system (HCPVT) based on a 1 cm2 multi-junction solar cell subjected to a concentration ratio from 500× to 2000× by using three different types of cooling fluids (water, ethylene glycol and water mixture (60:40), and syltherm oil 800). The results show that, for this configuration, the maximum volumetric temperature of the solar cell did not exceed the manufacturer’s recommended limit for the tested fluids. At 2000× the lowest solar cell temperature obtained by using water was 93.5 °C, while it reached as high as 109 °C by using syltherm oil 800, which is almost equal to the maximum operating limit provided by the manufacturer (110 °C). Overall, the best performance in terms of temperature distribution, thermal, and electrical efficiency was achieved by using water, while the highest outlet temperature was obtained by using syltherm oil 800.


2018 ◽  
Vol 171 ◽  
pp. 02002
Author(s):  
Elie Karam ◽  
Patrick Moukarzel ◽  
Maya Chamoun ◽  
Charbel Habchi ◽  
Charbel Bou-Mosleh

Due to global warming and the high toxic gas emissions of traditional power generation methods, renewable energy has become a very active topic in many applications. This study focuses on one versatile type of solar energy: Hybrid Photovoltaic Thermal System (hybrid PV/T). Hybrid PV/T combines both PV and thermal application and by doing this the efficiency of the system will increase by taking advantage of the temperature loss from PV module. The solar radiation and heat will be harnessed to deliver electricity and hot water simultaneously. In the present study a solar system is designed to recycle the heat and improve the temperature loss from PV module in order to supply both electricity and domestic hot water. The project was tested twice in Zouk Mosbeh - Lebanon; on May 18, 2016, and June 7, 2016. The average electrical efficiency was around 11.5% with an average electrical power output of 174.22 W, while with cooling, the average electrical efficiency reaches 11% with a power output of 200 W. The temperature increases by about 7 degrees Celsius from the inlet. The 1D conduction model is also performed in order to design the hybrid PV/T system.


Solar Energy ◽  
2014 ◽  
Vol 107 ◽  
pp. 372-379 ◽  
Author(s):  
Haifei Chen ◽  
Jie Ji ◽  
Yunfeng Wang ◽  
Wei Sun ◽  
Gang Pei ◽  
...  

2011 ◽  
Vol 287-290 ◽  
pp. 1553-1558 ◽  
Author(s):  
Zhen Jie Wang ◽  
Yong Qiang Niu ◽  
Jun Lin Du ◽  
Nai Xin Xu ◽  
Zhu Wu

A ternary Li-Mg-B alloy (64%Li, 4%Mg and 32%B, all compositions are reported as weight percent in this paper) foil was prepared and its phase structure and discharge behavior were investigated. The main phases existing in the alloy included Li5B4, Li3Mg7, LiB and Li. Coupled with LiNO3-KNO3eutectic electrolyte and MnO2cathode, the anode exhibited great potential in the intermediate temperature lithium batteries. At temperatures above 200°C, two steady voltage plateaus were obtained at near 3V and 2.7V, and the cell displayed an open-circuit voltage exceeding 3.2V. The experimentally measured capacity of the Li-Mg-B alloy was 5427C·g-1at 200°C, which was higher than that of LiB alloy (70%Li). Adding magnesium to LiB alloy could lower the cost of anodes without capacity loss.


2018 ◽  
Vol 152 ◽  
pp. 01003
Author(s):  
Chuah Yee Yong ◽  
Mohammad Taghi Hajibeigy ◽  
Chockalingam Aravind Vaithilingam ◽  
Rashmi Gangasa Walvekar

Solar energy is typically collected through photovoltaic (PV) to generate electricity or through thermal collectors as heat energy, they are generally utilised separately. This project is done with the purpose of integrating the two systems to improve the energy efficiency. The idea of this photovoltaic-thermal (PVT) setup design is to simultaneously cool the PV panel so it can operate at a lower temperature thus higher electrical efficiency and also store the thermal energy. The experimental data shows that the PVT setup increased the electrical efficiency of the standard PV setup from 1.64% to 2.15%. The integration of the thermal collector also allowed 37.25% of solar energy to be stored as thermal energy. The standard PV setup harnessed only 1.64% of the solar energy, whereas the PVT setup achieved 39.4%. Different flowrates were tested to determine its effects on the PVT setup’s electrical and thermal efficiency. The various flowrate does not significantly impact the electrical efficiency since it did not significantly impact the cooling of the panel. The various flowrates resulted in fluctuating thermal efficiencies, the relation between the two is inconclusive in this project.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Hashim A. Hussein ◽  
Ali H. Numan ◽  
Ruaa A. Abdulrahman

This paper presented the improvement of the performance of the photovoltaic panels under Iraqi weather conditions. The biggest problem is the heat stored inside the PV cells during operation in summer season. A new design of an active cooling technique which consists of a small heat exchanger and water circulating pipes placed at the PV rear surface is implemented. Nanofluids (Zn-H2O) with five concentration ratios (0.1, 0.2, 0.3, 0.4, and 0.5%) are prepared and optimized. The experimental results showed that the increase in output power is achieved. It was found that, without any cooling, the measuring of the PV temperature was 76°C in 12 June 2016; therefore, the conversion efficiency does not exceed more than 5.5%. The photovoltaic/thermal system was operated under active water cooling technique. The temperature dropped from 76 to 70°C. This led to increase in the electrical efficiency of 6.5% at an optimum flow rate of 2 L/min, and the thermal efficiency was 60%. While using a nanofluid (Zn-H2O) optimum concentration ratio of 0.3% and a flow rate of 2 L/min, the temperature dropped more significantly to 58°C. This led to the increase in the electrical efficiency of 7.8%. The current innovative technique approved that the heat extracted from the PV cells contributed to the increase of the overall energy output.


Author(s):  
Ali Radwan ◽  
Mohamed M. Awad ◽  
Shinichi Ookawara ◽  
Mahmoud Ahmed

Abstract In this study, the performance of concentrator photovoltaic (CPV) cell enhanced by using double layer microchannel heat sink (DL-MCHS) with nanofluid is investigated. Pure ethanol and 0.2 % Vol. Al2O3-ethanol are utilized to reduce the solar cell temperature under indoor solar concentration ratio of 5.7 Suns. The designed DL-MCHS is monolithically fabricated from Maraging steel using 3D metal printer. The experimental results showed that using parallel flow (PF) operation mode of the designed DL-MCHS is favourable for cooling the CPV system compared with the counter flow (CF) operation mode. In the cooled CPV using PF mode, the open circuit voltage enhancement is about 12.7% in comparison to the uncooled case. The nanofluid results also showed a reduction in the solar cell temperature in comparison with the pure coolant. The current results can be used as a validation step for accurate numerical modelling of nanofluid applications in CPV system cooling.


2014 ◽  
Vol 699 ◽  
pp. 468-473
Author(s):  
Mohd Afzanizam Mohd Rosli ◽  
Suhaimi Misha ◽  
Kamaruzzaman Sopian ◽  
Sohif Mat ◽  
Mohd Yusof Sulaiman ◽  
...  

This study developed a thermal model of a photovoltaic thermal collector (PVT) to predict the performance and outlet temperature of the system. The PVT consisted of a polycrystalline photovoltaic module, a polymer collector–type sheet in a tube, and an insulator. The motivation of the present work is that the polymer materials are flexible, low cost and lightweight which are for the PVT applications. The outlet temperature of the PVT increased with the decreasing rate of mass flow into the riser because the water had sufficient time for thermal heating. One unit of polymer collector can achieve an outlet temperature of 69 °C at 500 W/m2 at a mass flow rate of 0.0063 kg/s.


Sign in / Sign up

Export Citation Format

Share Document