scholarly journals Numerical analysis of semiconductor thermoelectric generator

2020 ◽  
Vol 24 (3 Part A) ◽  
pp. 1585-1591
Author(s):  
Zhifei Wu ◽  
Yuxia Xiang ◽  
Jianjun Wang

A thermoelectric generation model is proposed based on the structure of thermoelectric generator, working conditions, the effect of air heat transfer and contact resistance in thermoelectric components. In addition, the effect of the thermoelectric generator output performance under the condition of different temperature of the cold and heat source, contact resistance between the cold-end and hot-end, the load resistance and the contact resistance is calculated. The results show that the output voltage is linear associate with the temperature difference between hot and cold ends, however, the output power increase along with the increase of temperature of hot-end and decrease of cold-end. The output voltage reaches 5.76 V and the output power reaches 9.81 W when the temperature difference is 200?C. Assume that the contact resistance is ignored, the output voltage and power reach peak values of 3.61 V and 3.85 W. The output performance of thermoelectric generator decreases with the increase of thermal contact resistance at hot and cold ends, and the reduction is getting lower and lower. With the increase of the load resistance, the output power increases at the beginning and then decreases. The optimal output power is 3.69 W when the contact resistance is 0 ? and the optimal load resistance is 3.3 ?. The maximum output power corresponding to neglecting the contact resistance will be reduced by 13.5% when the contact resistance is 0.5 ?.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3861
Author(s):  
Jie Mei ◽  
Qiong Fan ◽  
Lijie Li ◽  
Dingfang Chen ◽  
Lin Xu ◽  
...  

With the rapid development of wearable electronics, novel power solutions are required to adapt to flexible surfaces for widespread applications, thus flexible energy harvesters have been extensively studied for their flexibility and stretchability. However, poor power output and insufficient sensitivity to environmental changes limit its widespread application in engineering practice. A doubly clamped flexible piezoelectric energy harvester (FPEH) with axial excitation is therefore proposed for higher power output in a low-frequency vibration environment. Combining the Euler–Bernoulli beam theory and the D’Alembert principle, the differential dynamic equation of the doubly clamped energy harvester is derived, in which the excitation mode of axial load with pre-deformation is considered. A numerical solution of voltage amplitude and average power is obtained using the Rayleigh–Ritz method. Output power of 22.5 μW at 27.1 Hz, with the optimal load resistance being 1 MΩ, is determined by the frequency sweeping analysis. In order to power electronic devices, the converted alternating electric energy should be rectified into direct current energy. By connecting to the MDA2500 standard rectified electric bridge, a rectified DC output voltage across the 1 MΩ load resistor is characterized to be 2.39 V. For further validation of the mechanical-electrical dynamical model of the doubly clamped flexible piezoelectric energy harvester, its output performances, including both its frequency response and resistance load matching performances, are experimentally characterized. From the experimental results, the maximum output power is 1.38 μW, with a load resistance of 5.7 MΩ at 27 Hz, and the rectified DC output voltage reaches 1.84 V, which shows coincidence with simulation results and is proved to be sufficient for powering LED electronics.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Min Zhang ◽  
Junlei Wang

A rigid circular cylinder with two piezoelectric beams attached on has been tested through vortex-induced vibrations (VIV) and wake-induced vibrations (WIV) by installing a big cylinder fixed upstream, in order to study the influence of the different flow-induced vibrations (FIV) types. The VIV test shows that the output voltage increases with the increases of load resistance; an optimal load resistance exists for the maximum output power. The WIV test shows that the vibration of the small cylinder is controlled by the vortex frequency of the large one. There is an optimal gap of the cylinders that can obtain the maximum output voltage and power. For a same energy harvesting device, WIV has higher power generation capacity; then the piezoelectric output characteristics can be effectively improved.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 592 ◽  
Author(s):  
KangHyun Yi

This paper analyzes the output voltage of an inductive wireless power transfer (WPT) depending on coupling conditions. When the optimum efficiency and maximum output power are obtained, it is called critical coupling, so the receiving coil and the transmitting coil should be separated by a certain distance. When the distance between the transmitting coil and receiving coil is very short, it is called over coupling, and output power decreases with the optimal operating state of the critical coupling condition. To design the entire circuit system for the inductive WPT depending on the coupling condition, it is beneficial to analyze the output voltage according to a load variation, an input voltage, and an operating frequency. Therefore, the output voltage depending on the coupling condition in the inductive WPT is analyzed in this paper. The output voltage gain in critical coupling condition is greater than one and is not affected by a load variation by a series LC resonant operation. The reduced output power in an over coupling condition can be recovered by a series LLC resonant operation. In addition, the output voltage gain is almost one and is affected by the load variation in the over coupling condition. A 5W prototype is implemented with the wireless power consortium standard coils and experimental results are shown to verify theoretical analysis and operation.


2021 ◽  
Vol 2 (2) ◽  
pp. 162-167
Author(s):  
Haris Masrepol ◽  
Muldi Yuhendri

Solar panels are a renewable energy power plant that uses sunlight as its main energy source. The power generated by solar panels are determined by the size of the solar panels, solar radiation and temperature. The power of the solar panels is also determined by the output voltage of the solar panels. To get the maximum output power at any time, it is necessary to adjust the output voltage of the solar panel. This study proposes controlling the maximum output power of solar panels, also known as maximum power point tracking (MPPT) by adjusting the output voltage of the solar panels using a buck converter. The buck converter output voltage regulation at the maximum power point of the solar panel is designed with the Perturbation and Observation (PO) algorithm which is implemented using an Arduino Mega 2560. This MPPT control system is applied to 4x50 Watt-Peak (WP) solar panels which are connected in parallel. The experimental results show that the proposed MPPT control system with the PO algorithm has worked well as expected. This can be seen from the output power generated by the solar panels already around the maximum power point at any change in solar radiation and temperature.


2014 ◽  
Vol 54 (1) ◽  
pp. 6-9 ◽  
Author(s):  
Marian Brázdil ◽  
Ladislav Šnajdárek ◽  
Petr Kracík ◽  
Jirí Pospíšil

This paper presents the design and test results of an external thermoelectric generator that utilizes the waste heat from a small-scale domestic biomass boiler with nominal rated heat output of 25 kW. The low-temperature Bi2Te3 generator based on thermoelectric modules has the potential to recover waste heat from gas combustion products as effective energy. The small-scale generator is constructed from independent segments. Measurements have shown that up to 11 W of electricity can be generated by one segment. Higher output power can be achieved by linking thermoelectric segments. The maximum output power is given by the dew point of the flue gas. The electrical energy that is generated can be used, e.g., for power supply or for charging batteries. In the near future, thermoelectric generators could completely eliminate the dependence an automated domestic boiler system on the power supply from the electricity grid, and could ensure comfortable operation in the event of an unexpected power grid failure.


2006 ◽  
Vol 973 ◽  
Author(s):  
Takayuki Matsumoto ◽  
Shigeo Yamaguchi ◽  
Atsushi Yamamoto

ABSTRACTWe have studied the temperature dependence of thermoelectric properties of amorphous InN thin films prepared by reactive radio-frequency sputtering. We fabricated 60-pair and 120-pair InN-chromel films, which were deposited on polyimide films. For the 120-pair device, the maximum open output voltage and the maximum output power were 210 mV and 65 nW, respectively, at temperature difference of 168 K.


2020 ◽  
Vol 10 ◽  
pp. 184798041989574 ◽  
Author(s):  
Sumera Rafique ◽  
Ajab Khan Kasi ◽  
Jafar Khan Kasi ◽  
Aminullah ◽  
Muzamil Bokhari ◽  
...  

Textile-based piezoelectric nanogenerator generates electrical energy from human motion. Here a novel type of textile-based piezoelectric nanogenerator is reported which is fabricated using the growth of silver-doped zinc oxide on carton fabric. Along with the optical and structural characterization of silver-doped zinc oxide nanorods, the electrical characterization was also performed for silver-doped zinc oxide piezoelectric nanogenerator. The silver-doped zinc oxide piezoelectric nanogenerator was found to generate three times greater power compared to undoped zinc oxide piezoelectric nanogenerator. By applying external mechanical force of 3 kgf and 31 MΩ of load resistance, the silver-doped zinc oxide piezoelectric nanogenerator generated an output power density of 1.45 mW cm−2. The effect of load resistance and load capacitor was determined and optimum values were calculated. The maximum output power was observed at a load resistance of 31 MΩ. The silver-doped zinc oxide piezoelectric nanogenerator was utilized to charge load capacitors and found that maximum energy could be stored at optimum load capacitance of 22 nF in 600 s (1800 cycles). This research may provide the opportunity to design high-output textile-based nanogenerators for practical applications like powering portable devices and sensors.


2018 ◽  
Vol 7 (1) ◽  
pp. 77 ◽  
Author(s):  
Rauf Terzi ◽  
Erol Kurt

The efficiencies of nuclear power plants are rather poor having the ratio %30 by using the conventional energy/exergy tools. According to that information, large amount of energy is wasted during condensation and thrown out to the environment. Thermoelectric generator (TEG) system has a potential to be used as a heat exchanging technology to produce power with a relatively low efficiency (about 5%) and it can transform the temperature difference into electricity and generate clean electrical energy. In the present study, we offer a novel system to recover the waste heat from a VVER-1000 nuclear power plant. The heat transfer of the TEG is analyzed numerically with respect to the various temperature ranges and constant mass flow rate of the exhaust steam entering the system. In the analyses, different hot temperature ranges (35ºC, 45ºC and 55ºC) and a constant cold temperature (i.e. 18ºC) are used for a HZ-20 thermoelectric module and it has been proven that the designed TEG can produce the maximum output power of 76,956 MW for a temperature difference ∆T=37 and the conversion efficiency of 3,854% sits. The TEG is designed for the condenser of a 1000 MW nuclear power plant. It's shown that about 2,0% increasing in the power plant efficiency is expected by using the selected thermoelectric generator in the condensation cycle.Article History: Received: July 15th 2017; Received:  October 17th 2017; Accepted: February 13rd 2018; Available onlineHow to Cite This Article: Terzi, R. and Kurt, E. (2018), Improving the efficiency of a nuclear power plant using a thermoelectric cogeneration system, Int. Journal of Renewable Energy Development, 7(1), 77-84.https://doi.org/10.14710/ijred.7.1.77-84


2010 ◽  
Vol 156-157 ◽  
pp. 908-914
Author(s):  
Xiu Li Yang ◽  
Tie Min Zhang ◽  
Sheng Wen

. For the purpose of improving the output power of piezoelectricity generator (PG), this paper derivates the improving equivalent circuit of piezoelectricity element according to piezoelectricity effect. The dielectric loss and conductive loss are considered. The dielectric loss is caused by the hysteretic effect between leakage current and electric intensity in the medium inside. The conductive loss is caused by the ceramic particles boundary conditions. The relationship between output voltage and current is set up. The relationship between resistance and output power is set up. The relationship between output voltage and out power is set up. Those relationships are simulated and experimented. From the results, it is can be known that there is an optimum load(200 ) for the maximum output power (70 ) in condition of fixed structure, size and fixed excitation frequency and amplitude. With the increasing of voltage, the current is decreasing with parabolic form and the output power increases lowly to a maximum power firstly, and then decreases fast.


Sign in / Sign up

Export Citation Format

Share Document