scholarly journals Modeling of soot particle collision and growth paths in gas-solid two-phase flow

2020 ◽  
pp. 215-215
Author(s):  
Hongling Ju ◽  
Fanquan Bian ◽  
Mingrui Wei

Particle collision is an important process in soot particle growth. In this research, based on gas-solid two-phase flow, particle trajectory was traced by the Lagrange approach with periodic boundaries. Trajectory intersection, collision probability, and critical velocity were considered, and the growth path of each particle was traced. The collision frequency (fc), agglomeration frequency (fa), and friction collision frequency (ffc) were calculated, and the main influence factors of particle collision were analyzed. The results showed that fc, fa, fa/fcincreased with the increase of the particle volume fraction and gasphasevelocity(v), but the particle initial diameter (dpi) andvhad the great influence on fa/fc. fa/fcobviously decreased with the increase of dpiand v.The statistical analysis of fa/fcand Stokes number showed that fa/fcdecreased with the increase of Stokes number, especially when stokes number was extremely small, fa/fcdecreased rapidly. Using the trajectory analysis of each particle, the particle growth process could be classified in three types: firstly, the particles that did not agglomerate with any particles during the entire calculation process; secondly, the particles that continually agglomerated with small particles to generate larger ones; and finally, the particles that were agglomerated by larger particles at some calculation moment.

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 951
Author(s):  
Yang Liu ◽  
Guohui Li

Gas turbulence modulations and particle dispersions of swirling gas–particle two-phase flow in the combustor is investigated under the large spans of the particle Stokes numbers. To fully consider the preferential concentrations and anisotropic dispersions of a particle, a kinetic frictional stress model coupled with a second-order moment two-phase turbulent model and granular temperature equation is improved. The proposed modeling and simulations are in good agreement with the experimental validations. Results show turbulent modulations and particle dispersions exhibit strongly anisotropic characteristics, keeping a close relationship with flow structure. The axial gas velocity and RMS fluctuation velocity of 45.0-μm EGP was approximately 5.0 times and 3.0 times greater than 1000.0 μm Copper particles, and their axial particle velocity was 0.25 times and twice greater than those of 45.0 μm EGP. The degree of modulation in the axial–radial direction is larger than those of radial–tangential and axial–tangential direction. Particle dispersions are sensitive to particle diameter parameters and intensified by higher Stokes number.


Author(s):  
Marco Pellegrini ◽  
Giulia Agostinelli ◽  
Hidetoshi Okada ◽  
Masanori Naitoh

Steam condensation is characterized by a relatively large interfacial region between gas and liquid which, in computational fluid dynamic (CFD) analyses, allows the creation of a discretized domain whose average cell size is larger than the interface itself. For this reason generally one fluid model with interface tracking (e.g. volume of fluid method, VOF) is employed for its solution in CFD, since the solution of the interface requires a reasonable amount of cells, reducing the modeling efforts. However, for some particular condensation applications, requiring the computation of long transients or the steam ejected through a large number of holes, one-fluid model becomes computationally too expensive for providing engineering information, and a two-fluid model (i.e. Eulerian two-phase flow) is preferable. Eulerian two-phase flow requires the introduction of closure terms representing the interactions between the two fluids in particular, in the condensation case, drag and heat transfer. Both terms involve the description of the interaction area whose definition is different from the typical one adopted in the boiling analyses. In the present work a simple but effective formulation for the interaction area is given based on the volume fraction gradient and then applied to a validation test case of steam bubbling in various subcooling conditions. It has been shown that this method gives realistic values of bubble detachment time, bubble penetration for the cases of interest in the nuclear application and in the particular application to the Fukushima Daiichi accident.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
T. Salameh ◽  
Y. Zurigat ◽  
A. Badran ◽  
C. Ghenai ◽  
M. El Haj Assad ◽  
...  

This paper presents three-dimensional numerical simulation results of the effect of surface tension on two-phase flow over unglazed collector covered with a wire screen. The homogenous model is used to simulate the flow with and without the effect of porous material of wire screen and surface tension. The Eulerian-Eulerian multiphase flow approach was used in this study. The phases are completely stratified, the interphase is well defined (free surface flow), and interphase transfer rate is very large. The liquid–solid interface, gas–liquid interface, and the volume fraction for both phases were considered as boundaries for this model. The results show that the use of porous material of wire screen will reduce the velocity of water flow and help the water flow to distribute evenly over unglazed plate collector. The possibility of forming any hot spot region on the surface was reduced. The water velocity with the effect of surface tension was found higher than the one without this effect, due to the extra momentum source added by surface tension in longitudinal direction. The use of porous material of wires assures an evenly distribution flow velocity over the inclined plate, therefore helps a net enhancement of heat transfer mechanism for unglazed solar water collector application.


2021 ◽  
Author(s):  
Yang Liu ◽  
Lixing Zhou

Abstract Turbulence modulations by particles of swirling gas-particle two-phase flow the axisymmetric chamber is investigated. To fully consider the preferential concentrations and anisotropic dispersions of particle, a second-order moment model coupling particle-particle collision model was improved based on the Eulerian-Eulerian two-fluid approach and the kinetic theory of granular flow. Proposed model, algorithm and in-house codes are validated and they are in good agreement with the experiment. Effects of ultralight expanded graphite and heavy Copper particles with large spans of Stokes number on gas velocity and fluctuations, Reynolds shear stress and tensor invariants, turbulence kinetic energy, and vortices structures are numerically simulated. Results show turbulent modulation exhibits strongly anisotropic characteristics and keeps in close relationship with flow structure. The disturbances of modulations, the alternations of vortex evolution are enforced by heavy-large particle with higher Stokes numbers. Preferential accumulations of light particle at shear stress regions in low vortices are weaker than those of heavy particle. For axial turbulence modulations, heavy particle plays the primary role on inhibition action due to larger inertia and light particle contributes to enhancement effect due to excellent followability.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yunfeng Dai ◽  
Zhifang Zhou ◽  
Jin Lin ◽  
Jiangbo Han

To describe accurately the flow characteristic of fracture scale displacements of immiscible fluids, an incompressible two-phase (crude oil and water) flow model incorporating interfacial forces and nonzero contact angles is developed. The roughness of the two-dimensional synthetic rough-walled fractures is controlled with different fractal dimension parameters. Described by the Navier–Stokes equations, the moving interface between crude oil and water is tracked using level set method. The method accounts for differences in densities and viscosities of crude oil and water and includes the effect of interfacial force. The wettability of the rough fracture wall is taken into account by defining the contact angle and slip length. The curve of the invasion pressure-water volume fraction is generated by modeling two-phase flow during a sudden drainage. The volume fraction of water restricted in the rough-walled fracture is calculated by integrating the water volume and dividing by the total cavity volume of the fracture while the two-phase flow is quasistatic. The effect of invasion pressure of crude oil, roughness of fracture wall, and wettability of the wall on two-phase flow in rough-walled fracture is evaluated.


2013 ◽  
Vol 80 (3) ◽  
Author(s):  
Cheng Cheng ◽  
Xiaobing Zhang

In conventional models for two-phase reactive flow of interior ballistic, the dynamic collision phenomenon of particles is neglected or empirically simplified. However, the particle collision between particles may play an important role in dilute two-phase flow because the distribution of particles is extremely nonuniform. The collision force may be one of the key factors to influence the particle movement. This paper presents the CFD-DEM approach for simulation of interior ballistic two-phase flow considering the dynamic collision process. The gas phase is treated as a Eulerian continuum and described by a computational fluid dynamic method (CFD). The solid phase is modeled by discrete element method (DEM) using a soft sphere approach for the particle collision dynamic. The model takes into account grain combustion, particle-particle collisions, particle-wall collisions, interphase drag and heat transfer between gas and solid phases. The continuous gas phase equations are discretized in finite volume form and solved by the AUSM+-up scheme with the higher order accurate reconstruction method. Translational and rotational motions of discrete particles are solved by explicit time integrations. The direct mapping contact detection algorithm is used. The multigrid method is applied in the void fraction calculation, the contact detection procedure, and CFD solving procedure. Several verification tests demonstrate the accuracy and reliability of this approach. The simulation of an experimental igniter device in open air shows good agreement between the model and experimental measurements. This paper has implications for improving the ability to capture the complex physics phenomena of two-phase flow during the interior ballistic cycle and to predict dynamic collision phenomena at the individual particle scale.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042094088
Author(s):  
Yi Ma ◽  
Minjia Zhang ◽  
Huashuai Luo

A numerical and experimental study was carried out to investigate the two-phase flow fields of the typical three valves used in the multiphase pumps. Under the gas volume fraction conditions in the range of 0%–100%, the three-dimensional steady and dynamic two-phase flow characteristics, pressure drops, and their multipliers of the ball valve, cone valve, and disk valve were studied, respectively, using Eulerian–Eulerian approach and dynamic grid technique in ANSYS FLUENT. In addition, a valve test system was built to verify the simulated results by the particle image velocimetry and pressure test. The flow coefficient CQ (about 0.989) of the disk valve is greater than those of the other valves (about 0.864) under the steady flow with a high Reynolds number. The two-phase pressure drops of the three valves fluctuate in different forms with the vibration of the cores during the dynamic opening. The two-phase multipliers of the fully opened ball valve are consistent with the predicted values of the Morris model, while those of the cone valve and disk valve had the smallest differences with the predicted values of the Chisholm model. Through the comprehensive analysis of the flow performance, pressure drop, and dynamic stability of the three pump valves, the disk valve is found to be more suitable for the multiphase pumps due to its smaller axial space, resistance loss, and better flow capacity.


2018 ◽  
Vol 18 (16) ◽  
pp. 6822-6835 ◽  
Author(s):  
Francisco R. Moreira da Mota ◽  
Daniel J. Pagano ◽  
Marina Enricone Stasiak

Sign in / Sign up

Export Citation Format

Share Document