scholarly journals Refrigerating fluid with a low global warming potential for automotive air conditioning systems in summer

2021 ◽  
pp. 45-45
Author(s):  
Zhaofeng Meng ◽  
Yin Liu ◽  
Dingbiao Wang ◽  
Long Gao ◽  
Junhai Yan

Refrigerants with low global warming potential (GWP) are much needed in automotive air conditioning systems. This paper compares two refrigerants, R134a (GWP=1300) and R513A (GWP=573) experimentally. The results show that the latter has lower cooling capacity, lower COP and lower discharge temperature than the former, revealing that R513A is a promising replacement of its high GWP partner.

Author(s):  
Shikuan Wang ◽  
Zhikai Guo ◽  
Xiaohong Han ◽  
Xiangguo Xu ◽  
Qin Wang ◽  
...  

HFO-1336mzz-Z with low global warming potential (GWP) was considered as a promising alternative of HCFC-123, HFC-245fa in air conditioning (AC) and heat pump (HP), respectively. In order to understand the operation performances of HFO-1336mzz-Z and HCFC-123, HFC-245fa in different working conditions, an experimental setup for testing the refrigeration cycle performance was built. The cycle performances of HFO-1336mzz-Z and HCFC-123 in AC conditions, HFO-1336mzz-Z and HFC-245fa in HP conditions were investigated by experiment. It was found in AC conditions, the discharge temperatures for the systems with HFO-1336mzz-Z and HCFC-123 were lower than 115 °C, the cooling capacity of the system with HFO-1336mzz-Z was 27% less than that with HCFC-123 at least, and the coefficient of performance (COP) of the system with HFO-1336mzz-Z was 0.1 lower than that with HCFC-123; in HP conditions, the discharge temperature with HFO-1336mzz-Z was lower than that with HFC-245fa, the former was never over 115 °C while the latter was up to 126 °C, the power input to the compressor with HFO-1336mzz-Z was 20% less than that with HFC-245fa in the same HP conditions, the heating capacity of the system with HFO-1336mzz-Z was 30–40% less than that with HFC-245fa.


2020 ◽  
Vol 28 (03) ◽  
pp. 2030004
Author(s):  
M. U. Siddiqui ◽  
Amro Owes ◽  
F. G. Al-Amri ◽  
Farooq Saeed

Conventionally, the CFC-type refrigerants were used until Montreal Protocol which stated that CFC refrigerants cause ozone depletion and should be replaced with alternative refrigerants. The alternative refrigerants are safe for ozone but they have comparatively high flammability, toxicity and global warming potential. Thus they need careful handling. In Kyoto Protocol, it was stated that the currently used refrigerants with high global warming potential need to be replaced with yet other alternative refrigerants with low global warming potential. This paper comprehensively reviews those recent studies that focused on the possible replacement of currently in-use refrigerant with a comparatively more environmental-friendly alternative refrigerant. Initially, the progression of refrigerants through different generations has been described and discussed. A list of currently in-use refrigerants has been presented. Then, the scientific developments for the replacement of listed refrigerants are thoroughly reviewed and critically analyzed. From the comprehensive review, it was found that R1234yf has the most potential to be a suitable low-flammable replacement for R134a for domestic refrigeration and automotive air-conditioning systems. Also, R32 has the most potential to be a suitable alternative of R410A.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Yousuf Alhendal ◽  
Abdalla Gomaa ◽  
Gamal Bedair ◽  
Abdulrahim Kalendar

The energy and exergy of low-global warming potential (GWP) refrigerants were investigated experimentally and theoretically. Refrigerants with a modest GWP100 of  ≤ 150 can be sufficient for bringing down emissions which were concerned for the automotive air-conditioning system. Three types of low-GWP refrigerants, R152a, R1234yf, and R1234ze(E), were examined with particular reference to the current high-GWP of R134a. The effect of different evaporating and condensing temperatures in addition to compressor speed was considered. The purpose was to bring a clear view of the performance characteristics of possible environment friendly alternatives of R134a. The analysis was carried out with compressor power, cooling capacity, coefficient of performance, exergy destruction, and exergy efficiency. It was noted that the total exergy destruction of R1234yf was reduced by 15% compared to that of R134a. The refrigerant R1234ze(E) has the highest energetic and exergetic performance compared with the other investigated refrigerants.


2019 ◽  
Vol 25 (12) ◽  
pp. 1-14
Author(s):  
Rafah Hussain ◽  
Issam Mohammed Ali

Reducing global warming potential (GWP) of refrigerants is needed to the decrease of ozone-depleting of refrigeration systems leakages. Refrigerant R1234yf is now used to substitute R134a inside mobile air conditioning systems. Thermodynamic properties of R1234yf are similar to R134a. Also, it has a very low GWP of 4, compared to 1430 for R134a, making it a proper choice for future automobile refrigerants. The purpose of this research is to represent the main operating and performance differences between R1234yf and R134a. Experimental analysis was carried out on the automotive air conditioning system (AACS) with 3 kW nominal capacity, to test and compare the performance of R134a with R1234yf. Experiments were accomplished for both refrigerants in almost the same working conditions and procedure with a range of ambient temperature varied from 26oC to 50oC. Parameters studied were ambient temperature, type of refrigerant in the system at compressor speed 1450 rpm, and internal thermal loads of passenger room. The performance characteristics of the system, including COP and cooling capacity, were studied by changing different parameters. The results show that COP of R134a is higher than R1234yf by 12.6%, while the refrigeration effect of R134a is higher than R1234yf by 25%. This shows that R1234yf is a suitable and good candidate for drop-in replacement of R134a in AACS.


Sign in / Sign up

Export Citation Format

Share Document