scholarly journals Modelling and optimal control of energy-saving-oriented automotive engine thermal management system

2021 ◽  
Vol 25 (4 Part B) ◽  
pp. 2897-2904
Author(s):  
Sanhua Zhang ◽  
Kunhao Tang ◽  
Xinhong Zheng

The thesis simulates the engine?s installation and uses conditions in the whole vehicle, such as the water tank, fan, the engine?s arrangement in the engine room, accessories and pipe-line connections, etc. to build a test bench for the engine thermal management system. According to the thermal management simulation analysis software KULI modelling, the article designs the bench test conditions according to the parameter input requirements of the thermal management simulation analysis software. The accuracy of the model is verified by comparing simulation and test data, and the NEDC driving cycle is used to simulate the performance of the vehicle cooling system to guide the selection and matching of thermal management system components.

2021 ◽  
Author(s):  
Robert A. Clark ◽  
Mingxuan Shi ◽  
Jonathan Gladin ◽  
Dimitri Mavris

Abstract The design of an aircraft thermal management system (TMS) that is capable of rejecting heat loads into the bypass stream of a typical low-bypass ratio turbofan engine, or a ram-air stream, is investigated. The TMS consists of an air cycle system (ACS), which is similar to the typical air cycle machines (ACMs) used on current aircraft, both military and commercial. This system turbocharges compressor bleed air and uses heat exchangers in a ram air stream or the engine bypass stream to cool the engine bleed air prior to expanding it to low temperatures suitable for heat rejection. In this study, a simple low-bypass ratio afterburning turbofan engine was modeled in NPSS to provide boundary conditions to the TMS system throughout the flight envelope of a typical military fighter aircraft. The engine was sized to produce sea level static (SLS) thrust roughly equivalent to that of an F-35-class engine. Two different variations of the TMS system, a ram air cooled and a bypass air cooled, were sized to handle a given demanded aircraft heat load, which might include environmental control system (ECS) loads, avionics cooling loads, weapons system loads, or other miscellaneous loads. The architecture and modeling of the TMS is described in detail, and the ability of the sized TMS to reject these demanded aircraft loads throughout several key off-design points was analyzed, along with the impact of ACS engine bleeds on engine thrust and fuel consumption. A comparison is made between the cooling capabilities of the ram-air stream versus the engine bypass stream, along with the benefits and drawbacks of each cooling stream. It is observed that the maximum load dissipation capability of the TMS is tied directly to the amount of engine bleed flow, while the level of bleed flow required is set by the temperature conditions imposed by the aircraft cooling system and the heat transfer fluid used in the ACS thermal transport bus. Furthermore, the higher bypass stream temperatures significantly limit the thermodynamic viability and capability of a TMS designed with bypass air as the ultimate heat sink. The results demonstrate the advantage that adaptive, variable cycle engines (VCEs) may have for future military aircraft designs, as they combine the best features of the two TMS architectures that were studied here.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8094
Author(s):  
Bichao Lin ◽  
Jiwen Cen ◽  
Fangming Jiang

It is important for the safety and good performance of a Li-ion battery module/pack to have an efficient thermal management system. In this paper, a battery thermal management system with a two-phase refrigerant circulated by a pump was developed. A battery module consisting of 240 18650-type Li-ion batteries was fabricated based on a finned-tube heat-exchanger structure. This structural design offers the potential to reduce the weight of the battery thermal management system. The cooling performance of the battery module was experimentally studied under different charge/discharge C-rates and with different refrigerant circulation pump operation frequencies. The results demonstrated the effectiveness of the cooling system. It was found that the refrigerant-based battery thermal management system could maintain the battery module maximum temperature under 38 °C and the temperature non-uniformity within 2.5 °C for the various operation conditions considered. The experimental results with 0.5 C charging and a US06 drive cycle showed that the thermal management system could reduce the maximum temperature difference in the battery module from an initial value of 4.5 °C to 2.6 °C, and from the initial 1.3 °C to 1.1 °C, respectively. In addition, the variable pump frequency mode was found to be effective at controlling the battery module, functioning at a desirable constant temperature and at the same time minimizing the pump work consumption.


Author(s):  
Robert Clark ◽  
Mingxuan Shi ◽  
Jonathan Gladin ◽  
Dimitri N. Mavris

Abstract The design of an aircraft thermal management system (TMS) that is capable of rejecting heat loads into the bypass stream of a typical low-bypass ratio turbofan engine, or a ram-air stream, is investigated. The TMS consists of an air cycle system, similar to the typical air cycle machines used on current aircraft, both military and commercial. This system turbocharges compressor bleed air and uses heat exchangers in a ram air stream, or the engine bypass stream, to cool the engine bleed air prior to expanding it to low temperatures suitable for heat rejection. In this study, a simple low-bypass ratio afterburning turbofan engine was modeled in NPSS to provide boundary conditions to the TMS system throughout the flight envelope of a typical military fighter aircraft. Two variations of the TMS system, a ram air cooled and a bypass air cooled, were sized to handle a given demanded aircraft heat load. The ability of the sized TMS to reject the demanded aircraft load throughout several key off-design points was analyzed. It was observed that the maximum load dissipation capability of the TMS is tied to the amount of engine bleed flow, while the level of bleed flow required is set by the temperature conditions imposed by the aircraft cooling system. Notably, engine bypass stream temperatures significantly limit the thermodynamic viability of a TMS designed with bypass air as the heat sink. The results demonstrate the advantage that variable cycle engines may have for future aircraft designs.


2019 ◽  
Vol 15 ◽  
pp. 100545 ◽  
Author(s):  
A. Siricharoenpanich ◽  
S. Wiriyasart ◽  
A. Srichat ◽  
P. Naphon

Author(s):  
R. S. Patel ◽  
C. E. Lents

This paper discusses an optimal thermal management system for a High Altitude Long Endurance Unmanned Air vehicle (HALE UAV). It examines several configurations to reject waste heat from the vehicle’s propulsion engine cooling system as well as the avionic cooling system and identifies the configuration which has a minimum impact on aircraft endurance, component reliability, and development risks. The optimization process incorporates two basic heat rejection approaches. One is a conventional approach which rejects cooling system waste heat to the atmosphere, and the other is a waste heat recovery approach which converts a portion of the waste heat into electricity to power avionics. Both concepts were optimized for three types of propulsion engines: Spark Ignition Piston engines, Rotary engines, and Diesel engines.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5301
Author(s):  
Duwon Choi ◽  
Youngkuk An ◽  
Nankyu Lee ◽  
Jinil Park ◽  
Jonghwa Lee

Vehicle integrated thermal management system (VTMS) is an important technology used for improving the energy efficiency of vehicles. Physics-based modeling is widely used to predict the energy flow in such systems. However, physics-based modeling requires several experimental approaches to get the required parameters. The experimental approach to obtain these parameters is expensive and requires great effort to configure a separate experimental device and conduct the experiment. Therefore, in this study, a neural network (NN) approach is applied to reduce the cost and effort necessary to develop a VTMS. The physics-based modeling is also analyzed and compared with recent NN techniques, such as ConvLSTM and temporal convolutional network (TCN), to confirm the feasibility of the NN approach at EPA Federal Test Procedure (FTP-75), Highway Fuel Economy Test cycle (HWFET), Worldwide harmonized Light duty driving Test Cycle (WLTC) and actual on-road driving conditions. TCN performed the best among the tested models and was easier to build than physics-based modeling. For validating the two different approaches, the physical properties of a 1 L class passenger car with an electric control valve are measured. The NN model proved to be effective in predicting the characteristics of a vehicle cooling system. The proposed method will reduce research costs in the field of predictive control and VTMS design.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2907
Author(s):  
Danial Karimi ◽  
Sahar Khaleghi ◽  
Hamidreza Behi ◽  
Hamidreza Beheshti ◽  
Md Sazzad Hosen ◽  
...  

A lithium-ion capacitor (LiC) is one of the most promising technologies for grid applications, which combines the energy storage mechanism of an electric double-layer capacitor (EDLC) and a lithium-ion battery (LiB). This article presents an optimal thermal management system (TMS) to extend the end of life (EoL) of LiC technology considering different active and passive cooling methods. The impact of different operating conditions and stress factors such as high temperature on the LiC capacity degradation is investigated. Later, optimal passive TMS employing a heat pipe cooling system (HPCS) is developed to control the LiC cell temperature. Finally, the effect of the proposed TMS on the lifetime extension of the LiC is explained. Moreover, this trend is compared to the active cooling system using liquid-cooled TMS (LCTMS). The results demonstrate that the LiC cell temperature can be controlled by employing a proper TMS during the cycle aging test under 150 A current rate. The cell’s top surface temperature is reduced by 11.7% using the HPCS. Moreover, by controlling the temperature of the cell at around 32.5 and 48.8 °C, the lifetime of the LiC would be extended by 51.7% and 16.5%, respectively, compared to the cycling of the LiC under natural convection (NC). In addition, the capacity degradation for the NC, HPCS, and LCTMS case studies are 90.4%, 92.5%, and 94.2%, respectively.


2014 ◽  
Vol 563 ◽  
pp. 362-365
Author(s):  
Chao Jiang ◽  
Zhi Guo Tang ◽  
Jia Xin Hao ◽  
Hui Qing Li

Effective thermal management of battery pack is essential for electric vehicle to adapt to different kinds of external environment, achieve desired working efficiency and life cycle of the power batteries. In this paper, a novel thermal management system is designed for battery pack in electric vehicle. Visualized simulation analysis of the thermal management system is carried on under different working conditions by CFD, then the structure parameters will be optimized. According to the conclusion, the thermal management system has been indicated to be effective to ensure an appropriate temperature range and the normal work of the power batteries in electric vehicle.


2021 ◽  
Author(s):  
Yasong Sun ◽  
Ruihuai Bai

Abstract With the development of modern technology and the economy, environmental protection and sustainable development have become the focus of global attention. In this paper, the promotion and development of electric vehicles have bright prospects, and they are also facing many challenges. Under different operating conditions, various safety problems of electric vehicles emerge one after another, especially the potential safety hazards caused by battery overheating that threaten electric vehicles' development process. In this paper, a new indirect liquid cooling system is designed and optimized for cylindrical lithium-ion batteries. A variety of design schemes for different cooling channel structures and cooling liquid inlet direction are proposed, and the corresponding solid-fluid coupling model is established. COMSOL Multiphysics simulation software models, simulates and analyses cooling systems. An approximate model is constructed using the Kriging method,and it is considered to optimize the battery cooling system and improve the optimization results. Sensitivity parameter analysis and system structure optimization design are also carried out on the influencing factors of the battery thermal management. The results indicate it effectively balances and reduces the maximum core temperature and temperature difference of the battery pack. Compared with the original design, from the optimized design of these factors, which based on method of the non-dominated sorting genetic algorithm (NSGA-II), there is an excellent ability on the optimized thermal management system to dissipate thermal energy and keep the overall cooling uniformity of the battery and thermal management system. Furthermore, under thermal abuse conditions, the optimized system can also prevent thermal runaway propagation. In summary, this research is expected to provide some practical suggestions and ideas for the engineering and production applications and structural optimization design carried by electric vehicles.


Author(s):  
Junkui (Allen) Huang ◽  
Shervin Shoai Naini ◽  
Richard Miller ◽  
Denise Rizzo ◽  
Katie Sebeck ◽  
...  

Enhanced battery pack cooling remains an open thermal management challenge in hybrid electric vehicle applications. A robust cooling system should maintain the battery pack core temperature within a prescribed operating range to improve system performance, durability, and reliability while minimizing power consumption. This paper proposes a smart battery thermal management system utilizing heat pipes as a thermal bus to efficiently remove heat. The system couples a standard air conditioning system with traditional ambient air ventilation. The two loops can run independently or in tandem to achieve the desired control. A nonlinear model predictive controller was developed to maintain the battery core temperature within a designated range using the compressor and fan speeds as the control inputs. A mathematical battery thermal model was developed to estimate the core and surface temperatures. The system performance and power requirements were evaluated for various driving cycles and ambient conditions. Numerical results showed that the proposed cooling system can regulate the battery core temperature within the desired temperature range (maximum tracking error of 2.1°C) while compensating for ambient temperature conditions using a suitable cooling strategy. The simulation results showed the ability to remove up to 1135 kJ of heat. The simulation also presents the power consumed by system components under varying modes and ambient conditions.


Sign in / Sign up

Export Citation Format

Share Document