scholarly journals Development of Cell-processing Systems for Human Stem Cells (Neural Stem Cells, Mesenchymal Stem Cells, and iPS Cells) for Regenerative Medicine

2010 ◽  
Vol 59 (2) ◽  
pp. 35-45 ◽  
Author(s):  
Yonehiro Kanemura
Author(s):  
M.A. Sarsenova ◽  
A.S. Issabekova ◽  
M.R. Karzhauov ◽  
G.K. Kudaibergen ◽  
M.S. Zhunussova ◽  
...  

Currently, one of the major focuses in regenerative medicine is the development and implementation into practice of composite biomaterials with chondro- and osteoinductive properties, which include human stem cells and growth factors. Heparin-conjugated fibrinogen was obtained using the carbodiimide method, which was further used to create heparin-conjugated fibrin hydrogels (HCFH). As a result of this work, two types of HCFH were obtained: a hydrogel with encapsulated mesenchymal stem cells (MSC) and a hydrogel with TGF-β1 and BMP-4 growth factors. It has been found that synovial MSCs retain viability after encapsulation in HCFH, which indicates that the developed hydrogel is biocompatible and does not have toxic effect to the cells. The results of enzyme-linked immunosorbent assay on the kinetics of BMP-4 and TGF-β1 release from HCFH showed that the developed hydrogel is able to retain BMP-4 and TGF-β1. The kinetics of release from HCFH into phosphate buffer was significantly slower compared to fibrin hydrogel.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 62
Author(s):  
Won-Yong Jeon ◽  
Seyoung Mun ◽  
Wei Beng Ng ◽  
Keunsoo Kang ◽  
Kyudong Han ◽  
...  

Enzymatic biofuel cells (EBFCs) have excellent potential as components in bioelectronic devices, especially as active biointerfaces to regulate stem cell behavior for regenerative medicine applications. However, it remains unclear to what extent EBFC-generated electrical stimulation can regulate the functional behavior of human adipose-derived mesenchymal stem cells (hAD-MSCs) at the morphological and gene expression levels. Herein, we investigated the effect of EBFC-generated electrical stimulation on hAD-MSC cell morphology and gene expression using next-generation RNA sequencing. We tested three different electrical currents, 127 ± 9, 248 ± 15, and 598 ± 75 nA/cm2, in mesenchymal stem cells. We performed transcriptome profiling to analyze the impact of EBFC-derived electrical current on gene expression using next generation sequencing (NGS). We also observed changes in cytoskeleton arrangement and analyzed gene expression that depends on the electrical stimulation. The electrical stimulation of EBFC changes cell morphology through cytoskeleton re-arrangement. In particular, the results of whole transcriptome NGS showed that specific gene clusters were up- or down-regulated depending on the magnitude of applied electrical current of EBFC. In conclusion, this study demonstrates that EBFC-generated electrical stimulation can influence the morphological and gene expression properties of stem cells; such capabilities can be useful for regenerative medicine applications such as bioelectronic devices.


Cell Research ◽  
2008 ◽  
Vol 18 (S1) ◽  
pp. S59-S59
Author(s):  
Zhifeng Deng ◽  
Zhumin Liu ◽  
Wei Tu ◽  
Yang Wang ◽  
Yuanlei Lou

2015 ◽  
Vol 24 (19) ◽  
pp. 2219-2242 ◽  
Author(s):  
Adam Nowakowski ◽  
Piotr Walczak ◽  
Miroslaw Janowski ◽  
Barbara Lukomska

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 379
Author(s):  
Rabia Ikram ◽  
Shamsul Azlin Ahmad Shamsuddin ◽  
Badrul Mohamed Jan ◽  
Muhammad Abdul Qadir ◽  
George Kenanakis ◽  
...  

Thanks to stem cells’ capability to differentiate into multiple cell types, damaged human tissues and organs can be rapidly well-repaired. Therefore, their applicability in the emerging field of regenerative medicine can be further expanded, serving as a promising multifunctional tool for tissue engineering, treatments for various diseases, and other biomedical applications as well. However, the differentiation and survival of the stem cells into specific lineages is crucial to be exclusively controlled. In this frame, growth factors and chemical agents are utilized to stimulate and adjust proliferation and differentiation of the stem cells, although challenges related with degradation, side effects, and high cost should be overcome. Owing to their unique physicochemical and biological properties, graphene-based nanomaterials have been widely used as scaffolds to manipulate stem cell growth and differentiation potential. Herein, we provide the most recent research progress in mesenchymal stem cells (MSCs) growth, differentiation and function utilizing graphene derivatives as extracellular scaffolds. The interaction of graphene derivatives in human and rat MSCs has been also evaluated. Graphene-based nanomaterials are biocompatible, exhibiting a great potential applicability in stem-cell-mediated regenerative medicine as they may promote the behaviour control of the stem cells. Finally, the challenges, prospects and future trends in the field are discussed.


Sign in / Sign up

Export Citation Format

Share Document