scholarly journals Plasma cell-free DNA for screening patients with benefit-assisted neoadjuvant chemotherapy for advanced gastric cancer

ScienceAsia ◽  
2020 ◽  
Vol 46 (4) ◽  
pp. 462
Author(s):  
Xu Lin ◽  
Zhou Haiyang ◽  
Yi Bo ◽  
Hu Hai ◽  
Zhang Ke ◽  
...  
2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Pengjie Yu ◽  
Shengmao Zhu ◽  
Yushuang Luo ◽  
Ganggang Li ◽  
Yongqiang Pu ◽  
...  

Objective. To explore the application value of circulating tumor cells (CTCs) and circulating free DNA (cfDNA) from peripheral blood in the prognosis of advanced gastric cancer (AGC). Here, we measured CTCs and cfDNA quantity for predicting the outcome of patients. Patients and Methods. Forty-five patients with advanced gastric cancer who underwent neoadjuvant chemotherapy and surgical treatment were enrolled in this study. All patients received neoadjuvant chemotherapy with paclitaxel + S-1 + oxaliplatin (PSOX) regimen, and CTCs and cfDNA of the peripheral blood were detected before and after neoadjuvant therapy. Relationships between the number/type of CTC or cfDNA and the efficacy of neoadjuvant chemotherapy were analyzed. Results. Among 45 patients, 43 (95.6%) were positive, and the positive rate of mesenchymal CTC was increased with the increase in the T stage. The proportion of mesenchymal CTC was positively correlated with the N stage ( P < 0.05 ), and the larger N stage will have the higher proportion of mesenchymal CTC. Patients with a small number of mesenchymal CTC before neoadjuvant chemotherapy were more likely to achieve partial response (PR) with neoadjuvant therapy. Patients with positive CA-199 were more likely to achieve PR with neoadjuvant therapy ( P < 0.05 ). Patients in the PR group were more likely to have decreased/unchanged cfDNA concentration after neoadjuvant therapy ( P = 0.119 ). After neoadjuvant therapy (before surgery), the cfDNA concentration was higher and the efficacy of neoadjuvant therapy (SD or PD) was lower ( P = 0.045 ). Conclusions. Peripheral blood CTC, especially interstitial CTC and cfDNA, has a certain value in predicting the efficacy and prognosis of neoadjuvant chemotherapy in advanced gastric cancer.


2019 ◽  
Vol 8 (4) ◽  
pp. 1531-1539
Author(s):  
Wei Wang ◽  
Weijie Zhang ◽  
Lei Su ◽  
Jianfeng Sang ◽  
Shui Wang ◽  
...  

2021 ◽  
Vol 9 (12) ◽  
pp. 2884-2889
Author(s):  
Boyeon Kim ◽  
Yoonjung Kim ◽  
Inho Park ◽  
Jae Yong Cho ◽  
Kyung-A Lee

2021 ◽  
Vol 20 ◽  
pp. 153303382097327
Author(s):  
Evangelos I. Karamitrousis ◽  
Ioanna Balgkouranidou ◽  
Nikolaos Xenidis ◽  
Kyriakos Amarantidis ◽  
Eirini Biziota ◽  
...  

Epigenetic modification of several genes is a key component in the development of gastric cancer. The methylation status of RASSF1A, SOX17 and Wif-1 genes was evaluated in the cell free circulating DNA of 70 patients with advanced gastric cancer, using methylation-specific PCR. Patients with higher cell-free DNA concentration seem to have lower PFS, than patients with lower cell-free DNA concentration (p = 0.001). RASSF1A was the tumor suppressor gene, most frequently methylated in metastatic gastric cancer patients, followed by SOX17 and Wif-1 (74.3%, 60.0% and 47.1%, respectively). Patients having the SOX17 promoter methylated, had lower progression free survival and overall survival, than unmethylated ones (p < 0.001). Patients having the Wif-1 promoter methylated, had lower progression free survival and overall survival, than unmethylated ones (p = 0.001). Patients having the RASSF1A promoter methylated, had lower progression free survival and overall survival, than unmethylated ones (p = 0.004). Promoter methylation of the examined genes was significantly associated with a decrease in progression free survival and overall survival, comparing to that of patients without methylation. Simultaneous methylation of the above genes was associated with even worse progression free survival and overall survival. The methylation of RASSF1A, SOX-17 and Wif-1 and genes, is a frequent epigenetic event in patients with advanced gastric cancer.


Lung Cancer ◽  
2015 ◽  
Vol 90 (1) ◽  
pp. 78-84 ◽  
Author(s):  
Shu Xia ◽  
Chiang-Ching Huang ◽  
Min Le ◽  
Rachel Dittmar ◽  
Meijun Du ◽  
...  

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii430-iii430
Author(s):  
Ross Mangum ◽  
Jacquelyn Reuther ◽  
Koel Sen Baksi ◽  
Ryan C Zabriskie ◽  
Ilavarasi Gandhi ◽  
...  

Abstract BACKGROUND The role of plasma cell-free DNA (cfDNA) as a cancer biomarker for tracking treatment response and detecting early relapse has been well described for solid tumors outside the central nervous system (CNS). However, the presence of a blood-brain barrier complicates the application of plasma cfDNA analysis for patients with CNS malignancies. METHODS cfDNA was extracted from plasma of pediatric patients with CNS tumors utilizing a QIAmp® MinElute® kit and quantitated with Qubit 2.0 Fluorometer. Extensive genomic testing, including targeted DNA and RNA solid tumor panels, exome and transcriptome sequencing, as well as copy number array, was performed on matched tumor samples as part of the Texas KidsCanSeq study. An Archer® Reveal ctDNA28 NGS kit was then used for assaying the sensitivity of detecting tumor-specific mutations in the plasma of these patients. RESULTS A median of 10.7ng cfDNA/mL plasma (Interquartile range: 6.4 – 15.3) was extracted from 78 patients at time of study enrollment. Longitudinal samples from 24 patients exhibited a median yield of 7.7ng cfDNA/mL plasma (IQR: 5.9 – 9.1). An initial cohort of 6 patients was identified with 7 somatic variants covered by the Archer® Reveal kit. Four of seven mutations identified in matched tumor specimens were detected in patient plasma at variant allele frequencies ranging from 0.2–1%. CONCLUSIONS While challenging, detection of cfDNA in the plasma of pediatric patients with CNS tumors is possible and is being explored in a larger patient cohort along with pilot studies investigating cerebrospinal fluid as an additional source for tumor-specific cfDNA.


Sign in / Sign up

Export Citation Format

Share Document