scholarly journals Chemical Signal-to-Noise Detection by Spiny Lobsters

1991 ◽  
Vol 181 (3) ◽  
pp. 419-426 ◽  
Author(s):  
R. K. Zimmer-Faust

2000 ◽  
Vol 31 (8-9) ◽  
pp. 843-849 ◽  
Author(s):  
Richard B. Miles ◽  
Zhen Tang ◽  
Sohail H. Zaidi ◽  
Azer Yalin ◽  
Noah Finkelstein




2004 ◽  
Vol 21 (3) ◽  
pp. 269-273 ◽  
Author(s):  
DELWIN T. LINDSEY ◽  
ANGELA M. BROWN

A novel noise-masking technique was used to test D'Zmura and Knoblauch's (1998) idea that subjects employ off-channel looking in detecting chromatic test stimuli embedded in spatiotemporal chromatic noise. Detection thresholds were obtained for stationary, isoluminant, Gaussian-windowed (σx = σy = 2.25 deg; σt = 0.25 s), 135 deg (yellow/blue) or 160 deg (orange/blue–green), sinusoidal test gratings (11 deg × 11 deg; 0.75 cycle/deg) superimposed on each of a series of dynamic, random-check chromatic noise masks varying in azimuth in DKL space. Thresholds for detecting the test in the presence of these variable masks were again measured in the presence of an additional (auxiliary) noise mask created from colors falling on azimuths of 0 deg or 90 deg (135-deg test) or 0 deg or 135 deg (160-deg test). The effectiveness, kvar, of the variable noise masks in elevating grating detection thresholds was determined by fitting the detection data to the Pelli-Legge equation relating test detection energy to variable noise-mask energy: Et = K + kvarNvar. Differences in the calculated values of kvar for detection data obtained with and without the auxiliary masks were consistent with off-channel looking and were well accounted for by a simple model based on the idea that subjects possess a multichannel array of linear chromatic detectors spanning the isoluminant plane of DKL space, and they can choose the channel that has the highest signal-to-noise ratio.



Author(s):  
Robert M. Glaeser

It is well known that a large flux of electrons must pass through a specimen in order to obtain a high resolution image while a smaller particle flux is satisfactory for a low resolution image. The minimum particle flux that is required depends upon the contrast in the image and the signal-to-noise (S/N) ratio at which the data are considered acceptable. For a given S/N associated with statistical fluxtuations, the relationship between contrast and “counting statistics” is s131_eqn1, where C = contrast; r2 is the area of a picture element corresponding to the resolution, r; N is the number of electrons incident per unit area of the specimen; f is the fraction of electrons that contribute to formation of the image, relative to the total number of electrons incident upon the object.



Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.



Author(s):  
W. Kunath ◽  
K. Weiss ◽  
E. Zeitler

Bright-field images taken with axial illumination show spurious high contrast patterns which obscure details smaller than 15 ° Hollow-cone illumination (HCI), however, reduces this disturbing granulation by statistical superposition and thus improves the signal-to-noise ratio. In this presentation we report on experiments aimed at selecting the proper amount of tilt and defocus for improvement of the signal-to-noise ratio by means of direct observation of the electron images on a TV monitor.Hollow-cone illumination is implemented in our microscope (single field condenser objective, Cs = .5 mm) by an electronic system which rotates the tilted beam about the optic axis. At low rates of revolution (one turn per second or so) a circular motion of the usual granulation in the image of a carbon support film can be observed on the TV monitor. The size of the granular structures and the radius of their orbits depend on both the conical tilt and defocus.



Author(s):  
David L. Wetzel ◽  
John A. Reffner ◽  
Gwyn P. Williams

Synchrotron radiation is 100 to 1000 times brighter than a thermal source such as a globar. It is not accompanied with thermal noise and it is highly directional and nondivergent. For these reasons, it is well suited for ultra-spatially resolved FT-IR microspectroscopy. In efforts to attain good spatial resolution in FT-IR microspectroscopy with a thermal source, a considerable fraction of the infrared beam focused onto the specimen is lost when projected remote apertures are used to achieve a small spot size. This is the case because of divergence in the beam from that source. Also the brightness is limited and it is necessary to compromise on the signal-to-noise or to expect a long acquisition time from coadding many scans. A synchrotron powered FT-IR Microspectrometer does not suffer from this effect. Since most of the unaperatured beam’s energy makes it through even a 12 × 12 μm aperture, that is a starting place for aperture dimension reduction.



Author(s):  
M. Unser ◽  
B.L. Trus ◽  
A.C. Steven

Since the resolution-limiting factor in electron microscopy of biological macromolecules is not instrumental, but is rather the preservation of structure, operational definitions of resolution have to be based on the mutual consistency of a set of like images. The traditional measure of resolution for crystalline specimens in terms of the extent of periodic reflections in their diffraction patterns is such a criterion. With the advent of correlation averaging techniques for lattice rectification and the analysis of non-crystalline specimens, a more general - and desirably, closely compatible - resolution criterion is needed. Two measures of resolution for correlation-averaged images have been described, namely the differential phase residual (DPR) and the Fourier ring correlation (FRC). However, the values that they give for resolution often differ substantially. Furthermore, neither method relates in a straightforward way to the long-standing resolution criterion for crystalline specimens.



Author(s):  
W. Baumeister ◽  
R. Rachel ◽  
R. Guckenberger ◽  
R. Hegerl

IntroductionCorrelation averaging (CAV) is meanwhile an established technique in image processing of two-dimensional crystals /1,2/. The basic idea is to detect the real positions of unit cells in a crystalline array by means of correlation functions and to average them by real space superposition of the aligned motifs. The signal-to-noise ratio improves in proportion to the number of motifs included in the average. Unlike filtering in the Fourier domain, CAV corrects for lateral displacements of the unit cells; thus it avoids the loss of resolution entailed by these distortions in the conventional approach. Here we report on some variants of the method, aimed at retrieving a maximum of information from images with very low signal-to-noise ratios (low dose microscopy of unstained or lightly stained specimens) while keeping the procedure economical.



Sign in / Sign up

Export Citation Format

Share Document