Habitat Fragmentation, Native Insect Pollinators, and Feral Honey Bees in Argentine 'Chaco Serrano'

1994 ◽  
Vol 4 (2) ◽  
pp. 378-392 ◽  
Author(s):  
Marcelo A. Aizen ◽  
Peter Feinsinger
2021 ◽  
Vol 65 (2) ◽  
pp. 279-290
Author(s):  
Ricardo Alberto Toledo-Hernández ◽  
Mónica Pulido-Enríquez ◽  
Francisco Landeros-Pedro ◽  
Douglas Rodríguez ◽  
Daniel Sánchez

Abstract Crop protection substances are continuously developed to prevent the decimation of non-target insect populations through insecticide use. The bait formulation Acttra SWD was created to attract the adult spotted-wing drosophila, a generalist pest of berries, and when mixed with insecticide would cause a reduction in the volume of insecticide applied, thus avoiding a complete coverage of crops and resulting in economic and ecological benefits to society. However, Acttra SWD has some compounds, including sugars and fruit odors, that might attract non-target fauna, especially insect pollinators. Therefore this study aimed (1) to investigate if Acttra SWD mixed with the recommended pesticide, i.e. spinosad (Entrust), is attractive to the honey bee, which is extensively used for berry pollination and (2) to evaluate the insecticidal activity of Acttra/Entrust in oral and contact tests on the same species. In all replicates, most foragers rejected feeders that offered Acttra/Entrust, and some switched to Acttra/Entrust-free feeders. Accordingly, mortality caused by this mixture in oral tests was low and did not differ from control, since the majority of bees did not consume the Acttra/Entrust treatment. However, mortality caused by this mixture was higher than in control groups in topical tests. Our results indicate that honey bees will not be attracted to and poisoned by crops sprayed with Acttra/Entrust, but contact with the bait would result in lethal or sub-lethal effects.


2021 ◽  
Author(s):  
Lorenzo Santorelli ◽  
Toby Wilkinson ◽  
Ronke Abdulmalik ◽  
Yuma Rai ◽  
Christopher J. Creevey ◽  
...  

AbstractHoney bees use plant material to manufacture their own food. These insect pollinators visit flowers repeatedly to collect nectar and pollen, which are shared with other hive bees to produce honey and beebread. While producing these products, beehives accumulate a tremendous amount of microbes, including bacteria that derive from plants and different parts of the honey bees’ body. In this study, we conducted 16S rDNA metataxonomic analysis on honey and beebread samples that were collected from 15 beehives in the southeast of England in order to quantify the bacteria associated with beehives. The results highlighted that honeybee products carry a significant variety of bacterial groups that comprise bee commensals, environmental bacteria and pathogens of plants and animals. Remarkably, this bacterial diversity differs amongst the beehives, suggesting a defined fingerprint that is affected, not only by the nectar and pollen gathered from local plants, but also from other environmental sources. In summary, our results show that every hive possesses their own distinct microbiome, and that honeybee products are valuable indicators of the bacteria present in the beehives and their surrounding environment.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4458 ◽  
Author(s):  
Louisa A. Hooven ◽  
Priyadarshini Chakrabarti ◽  
Bryan J. Harper ◽  
Ramesh R. Sagili ◽  
Stacey L. Harper

The decline in populations of insect pollinators is a global concern. While multiple factors are implicated, there is uncertainty surrounding the contribution of certain groups of pesticides to losses in wild and managed bees. Nanotechnology-based pesticides (NBPs) are formulations based on multiple particle sizes and types. By packaging active ingredients in engineered particles, NBPs offer many benefits and novel functions, but may also exhibit different properties in the environment when compared with older pesticide formulations. These new properties raise questions about the environmental disposition and fate of NBPs and their exposure to pollinators. Pollinators such as honey bees have evolved structural adaptations to collect pollen, but also inadvertently gather other types of environmental particles which may accumulate in hive materials. Knowledge of the interaction between pollinators, NBPs, and other types of particles is needed to better understand their exposure to pesticides, and essential for characterizing risk from diverse environmental contaminants. The present review discusses the properties, benefits and types of nanotechnology-based pesticides, the propensity of bees to collect such particles and potential impacts on bee pollinators.


2020 ◽  
Vol 252 ◽  
pp. 108824
Author(s):  
Nicola Delnevo ◽  
Eddie J. van Etten ◽  
Margaret Byrne ◽  
Alessandro Petraglia ◽  
Michele Carbognani ◽  
...  

2015 ◽  
Vol 105 (4) ◽  
pp. 515-520 ◽  
Author(s):  
M.-M. Wong ◽  
C.-L. Lim ◽  
J.-J. Wilson

AbstractChinese knotweed (Persicaria chinensis) is of ecological and economic importance as a high-risk invasive species and a traditional medicinal herb. However, the insects associated with P. chinensis pollination have received scant attention. As a widespread invasive plant we would expect P. chinensis to be associated with a diverse group of insect pollinators, but lack of taxonomic identification capacity is an impediment to confirm this expectation. In the present study we aimed to elucidate the insect pollinators of P. chinensis in peninsular Malaysia using DNA barcoding. Forty flower visitors, representing the range of morphological diversity observed, were captured at flowers at Ulu Kali, Pahang, Malaysia. Using Automated Barcode Gap Discovery, 17 morphospecies were assigned to 23 species representing at least ten families and four orders. Using the DNA barcode library (BOLD) 30% of the species could be assigned a species name, and 70% could be assigned a genus name. The insects visiting P. chinensis were broadly similar to those previously reported as visiting Persicaria japonica, including honey bees (Apis), droneflies (Eristalis), blowflies (Lucilia) and potter wasps (Eumedes), but also included thrips and ants.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Simone Tosi ◽  
James C. Nieh ◽  
Annely Brandt ◽  
Monica Colli ◽  
Julie Fourrier ◽  
...  

AbstractThe assessment of pesticide risks to insect pollinators have typically focused on short-term, lethal impacts. The environmental ramifications of many of the world’s most commonly employed pesticides, such as those exhibiting systemic properties that can result in long-lasting exposure to insects, may thus be severely underestimated. Here, seven laboratories from Europe and North America performed a standardised experiment (a ring-test) to study the long-term lethal and sublethal impacts of the relatively recently approved ‘bee safe’ butenolide pesticide flupyradifurone (FPF, active ingredient in Sivanto®) on honey bees. The emerging contaminant, FPF, impaired bee survival and behaviour at field-realistic doses (down to 11 ng/bee/day, corresponding to 400 µg/kg) that were up to 101-fold lower than those reported by risk assessments (1110 ng/bee/day), despite an absence of time-reinforced toxicity. Our findings raise concerns about the chronic impact of pesticides on pollinators at a global scale and support a novel methodology for a refined risk assessment.


Author(s):  
Sainath Suryanarayanan

On your next stroll outdoors, you may come across a flowering plant, enjoy its beauty, and perhaps even taste its fruits. A wandering Homo sapiens, however, is probably not the flowering plant’s primary audience; an insect pollinator is more likely the one being wooed. Indeed, the vast biodiversity of flowering plants and insects on Earth is thought to be the result of a fruitful co-evolution over several million years between these organisms (Price 1997, pp. 239–258). Bees, wasps, butterflies, flies, and several other insects are also crucial in their role as pollinators for sus­taining managed agricultural ecosystems (or agro-ecosystems; National Research Council [NRC] 2007). Honey bees (Apis mellifera), managed by beekeepers, are alone estimated to be responsible for over $15 billion worth of increased yield and quality in the United States annually (Morse and Calderone 2000). U.S. growers rent an estimated 2 million beehives each year from beekeepers to pollinate over ninety different fruit, vegetable, and fiber crops (Delaplane and Mayer 2000; NRC 2007). In the first decades of the 21st century, public and scientific attention in the United States and elsewhere has been gripped by frequent reports of declines in populations of insect pollinators (e.g., Biesmeijer et al. 2006; NRC 2007), exemplified most dramatically by the news of Colony Collapse Disorder (CCD) among managed honey bees (vanEngelsdorp et al. 2009; Pettis and Delaplane 2010). While there are ongoing scientific and public debates over the extent to which the documented declines in insect pollinators constitute a global “pollinator crisis,” whether agricultural productivity has actually declined due to these losses, and what the primary causal factors are, there is nonetheless a consensus that parts of North America and Europe continue to undergo worrying reductions in the diversity and abundance of multiple species of insect pollinators (Ghazoul 2005; Stefan-Dewenter et al. 2005; NRC 2007; Carvalheiro et al. 2013). In this chapter, I analyze the main kinds of efforts that are being taken by key institutional players to resolve the environmental problem of pollinator decline in the United States.


2019 ◽  
Vol 85 (21) ◽  
Author(s):  
Jason A. Rothman ◽  
Laura Leger ◽  
Jay S. Kirkwood ◽  
Quinn S. McFrederick

ABSTRACT Honey bees are important insect pollinators used heavily in agriculture and can be found in diverse environments. Bees may encounter toxicants such as cadmium and selenate by foraging on plants growing in contaminated areas, which can result in negative health effects. Honey bees are known to have a simple and consistent microbiome that conveys many benefits to the host, and toxicant exposure may impact this symbiotic microbial community. We used 16S rRNA gene sequencing to assay the effects that sublethal cadmium and selenate treatments had over 7 days and found that both treatments significantly but subtly altered the composition of the bee microbiome. Next, we exposed bees to cadmium and selenate and then used untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics to show that chemical exposure changed the bees’ metabolite profiles and that compounds which may be involved in detoxification, proteolysis, and lipolysis were more abundant in treatments. Finally, we exposed several strains of bee-associated bacteria in liquid culture and found that each strain removed cadmium from its medium but that only Lactobacillus Firm-5 microbes assimilated selenate, indicating the possibility that these microbes may reduce the metal and metalloid burden on their host. Overall, our report shows that metal and metalloid exposure can affect the honey bee microbiome and metabolome and that strains of bee-associated bacteria can bioaccumulate these toxicants. IMPORTANCE Bees are important insect pollinators that may encounter environmental pollution when foraging upon plants grown in contaminated areas. Despite the pervasiveness of pollution, little is known about the effects of these toxicants on honey bee metabolism and their symbiotic microbiomes. Here, we investigated the impact of selenate and cadmium exposure on the gut microbiome and metabolome of honey bees. We found that exposure to these chemicals subtly altered the overall composition of the bees’ microbiome and metabolome and that exposure to toxicants may negatively impact both host and microbe. As the microbiome of animals can reduce mortality upon metal or metalloid challenge, we grew bee-associated bacteria in media spiked with selenate or cadmium. We show that some bacteria can remove these toxicants from their media in vitro and suggest that bacteria may reduce metal burden in their hosts.


Sign in / Sign up

Export Citation Format

Share Document