A model theoretic approach to Malcev conditions

1977 ◽  
Vol 42 (2) ◽  
pp. 277-288 ◽  
Author(s):  
John T. Baldwin ◽  
Joel Berman

A varietyV(equational class of algebras) satisfies a strong Malcev condition ∃f1,…, ∃fnθ(f1, …,fn,x1, …,xm) where θ is a conjunction of equations in the function variablesf1, …,fnand the individual variablesx1, …,xm, if there are polynomial symbolsp1, …,pnin the language ofVsuch that ∀x1, …,xmθ(p1…,pn,x1, …,xm) is a law ofV. Thus a strong Malcev condition involves restricted second order quantification of a strange sort. The quantification is restricted to functions which are “polynomially definable”. This notion was introduced by Malcev [6] who used it to describe those varieties all of whose members have permutable congruence relations. The general formal definition of Malcev conditions is due to Grätzer [1]. Since then and especially since Jónsson's [3] characterization of varieties with distributive congruences there has been extensive study of strong Malcev conditions and the related concepts: Malcev conditions and weak Malcev conditions.In [9], Taylor gives necessary and sufficient semantic conditions for a class of varieties to be defined by a (strong) Malcev condition. A key to the proof is the translation of the restricted second order concepts into first order concepts in a certain many sorted language. In this paper we show that, given this translation, Taylor's theorem is an easy consequence of a result of Tarski [8] and the standard preservation theorems of first order logic.

1950 ◽  
Vol 15 (2) ◽  
pp. 81-91 ◽  
Author(s):  
Leon Henkin

The first order functional calculus was proved complete by Gödel in 1930. Roughly speaking, this proof demonstrates that each formula of the calculus is a formal theorem which becomes a true sentence under every one of a certain intended class of interpretations of the formal system.For the functional calculus of second order, in which predicate variables may be bound, a very different kind of result is known: no matter what (recursive) set of axioms are chosen, the system will contain a formula which is valid but not a formal theorem. This follows from results of Gödel concerning systems containing a theory of natural numbers, because a finite categorical set of axioms for the positive integers can be formulated within a second order calculus to which a functional constant has been added.By a valid formula of the second order calculus is meant one which expresses a true proposition whenever the individual variables are interpreted as ranging over an (arbitrary) domain of elements while the functional variables of degree n range over all sets of ordered n-tuples of individuals. Under this definition of validity, we must conclude from Gödel's results that the calculus is essentially incomplete.It happens, however, that there is a wider class of models which furnish an interpretation for the symbolism of the calculus consistent with the usual axioms and formal rules of inference. Roughly, these models consist of an arbitrary domain of individuals, as before, but now an arbitrary class of sets of ordered n-tuples of individuals as the range for functional variables of degree n. If we redefine the notion of valid formula to mean one which expresses a true proposition with respect to every one of these models, we can then prove that the usual axiom system for the second order calculus is complete: a formula is valid if and only if it is a formal theorem.


2020 ◽  
Author(s):  
Mihael Drofenik

The well-known definition of disease, which Samuel Hahnemann presented in a tentative theory for his new science and art of healing, is used as the starting point for the thermodynamic model of homeopathy. The Le Chatelier principle was applied to the biochemical equilibrium compartmentalized in the individual human cells of an ill person to explain the curing based on the re-establishment of the starting equilibrium of a healthy person when using a remedy. It is revealed that a high dilution accompanied by succession is required to release the remedies to their constituent molecular species in order to increase their activity when taking part in the biochemical equilibrium that is essential for healing. In addition, a single remedy reaction-product species, when it is in excess, as well as satisfying the kinetic equilibrium, is a necessary and sufficient condition to force the new biochemical equilibrium in the direction of the basic original equilibrium associated with a healthy state. In addition, homeopathic aggravation is considered on the basis of the Law of Mass Action and the role of the small remedy concentration in some high-profile models is revisited. The second elementary law of homeopathy, the Law of the Infinitesimals, was explained based on a kinetic model. When a remedy occurs in the human cell of a healthy person and forms a reaction product (Simillimum) that induces the finest medical symptoms of an ill person, then remedies entering the cell of the ill person will form identical Simillimum molecules and re-establish the initial equilibrium of the healthy state and cure the ill person. However, this will also induce a molecular crowding in the cells of the ill person. For kinetic reasons, this will aggravate the re-establishment of the initial equilibrium and consequently worsen or even interrupt the medical treatment. At a low remedy concentration, the molecular crowding becomes negligible while the formation of the Simillimum and the re-establishment of the initial equilibrium will take place continuously and cure the person who is ill. The final understanding of the Simillimum in the thermodynamic model was illuminated and wide-opened its duality with the ill person’s key compound.


1976 ◽  
Vol 41 (2) ◽  
pp. 337-340
Author(s):  
Scott K. Lehmann

This note describes a simple interpretation * of modal first-order languages K with but finitely many predicates in derived classical second-order languages L(K) such that if Γ is a set of K-formulae, Γ is satisfiable (according to Kripke's 55 semantics) iff Γ* is satisfiable (according to standard (or nonstandard) second-order semantics).The motivation for the interpretation is roughly as follows. Consider the “true” modal semantics, in which the relative possibility relation is universal. Here the necessity operator can be considered a universal quantifier over possible worlds. A possible world itself can be identified with an assignment of extensions to the predicates and of a range to the quantifiers; if the quantifiers are first relativized to an existence predicate, a possible world becomes simply an assignment of extensions to the predicates. Thus the necessity operator can be taken to be a universal quantifier over a class of assignments of extensions to the predicates. So if these predicates are regarded as naming functions from extensions to extensions, the necessity operator can be taken as a string of universal quantifiers over extensions.The alphabet of a “finite” modal first-order language K shall consist of a non-empty countable set Var of individual variables, a nonempty finite set Pred of predicates, the logical symbols ‘¬’ ‘∧’, and ‘∧’, and the operator ‘◊’. The formation rules of K generate the usual Polish notations as K-formulae. ‘ν’, ‘ν1’, … range over Var, ‘P’ over Pred, ‘A’ over K-formulae, and ‘Γ’ over sets of K-formulae.


1956 ◽  
Vol 21 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Richard Montague ◽  
Leon Henkin

The following remarks apply to many functional calculi, each of which can be variously axiomatized, but for clarity of exposition we shall confine our attention to one particular system Σ. This system is to have the usual primitive symbols and formation rules of the pure first-order functional calculus, and the following formal axiom schemata and formal rules of inference.Axiom schema 1. Any tautologous wff (well-formed formula).Axiom schema 2. (a) A ⊃ B, where A is any wff, a and b are any individual variables, and B arises from A by replacing all free occurrences of a by free occurrences of b.Axiom schema 3. (a)(A ⊃ B)⊃(A⊃ (a)B). where A and B are any wffs, and a is any individual variable not free in A.Rule of Modus Ponens: applies to wffs A and A ⊃ B, and yields B.Rule of Generalization: applies to a wff A and yields (a)A, where a is any individual variable.A formal proof in Σ is a finite column of wffs each of whose lines is a formal axiom or arises from two preceding lines by the Rule of Modus Ponens or arises from a single preceding line by the Rule of Generalization. A formal theorem of Σ is a wff which occurs as the last line of some formal proof.


1979 ◽  
Vol 57 (2) ◽  
pp. 141-151 ◽  
Author(s):  
Alastair D. Macdonald

Organogenesis of the female flower and gynecandrous partial inflorescence is described. Approximately 25 first-order inflorescence bracts are formed in an acropetal sequence. A second-order inflorescence axis, the partial inflorescence, develops in the axil of each bract. Third-, fourth-, and fifth-order axes arise in the axils of second-, third-, and fourth-order bracts. A gynoecium terminates a second-order axis and sometimes a distal third-order axis. A gynoecium consists of two stigmas and one basal, unitegmic, orthotropous ovule. The wall enclosing the ovule, the circumlocular wall, is comprised distally of gynoecial tissue and proximally of tissue of the inflorescence axis and its appendages. The latter portion of the wall is formed by zonal growth. Androecial members, formed proximal to the gynoecium on the partial inflorescence, are carried onto the circumlocular wall by zonal growth. A stamen may develop from the last-formed primordium before gynoecial inception or from a potentially stigmatic primordium. The papillae of the flower and fruit arise as emergences and from potentially bracteate, axial, and staminate primorida during the development of the circumlocular wall. The term circumlocular wall is used in a neutral sense to describe this unique structure. Since the gynoecium is composed of gynoecial appendages and inflorescence axis and appendages, a functional definition of gynoecium must be expanded to include any tissue, including an inflorescence, that surrounds the ovule(s) and forms the fruit(s).


1939 ◽  
Vol 4 (2) ◽  
pp. 77-79 ◽  
Author(s):  
C. H. Langford

It is known that the usual definition of a dense series without extreme elements is complete with respect to first-order functions, in the sense that any first-order function on the base of a set of postulates defining such a series either is implied by the postulates or is inconsistent with them. It is here understood, in accordance with the usual convention, that when we speak of a function on the base , the function shall be such as to place restrictions only upon elements belonging to the class determined by f; or, more exactly, every variable with a universal prefix shall occur under the hypothesis that its values satisfy f, while every variable with an existential prefix shall have this condition categorically imposed upon it.Consider a set of postulates defining a dense series without extreme elements, and add to this set the condition of Dedekind section, to be formulated as follows. Let the conjunction of the three functions,be written H(ϕ), where the free variables f and g, being parameters throughout, are suppressed. This is the hypothesis of Dedekind's condition, and the conclusion iswhich may be written C(ϕ).


2000 ◽  
Vol 10 (4) ◽  
pp. 327-351 ◽  
Author(s):  
RALF HINZE

A trie is a search tree scheme that employs the structure of search keys to organize information. Tries were originally devised as a means to represent a collection of records indexed by strings over a fixed alphabet. Based on work by C. P. Wadsworth and others, R. H. Connelly and F. L. Morris generalized the concept to permit indexing by elements built according to an arbitrary signature. Here we go one step further, and define tries and operations on tries generically for arbitrary datatypes of first-order kind, including parameterized and nested datatypes. The derivation employs techniques recently developed in the context of polytypic programming and can be regarded as a comprehensive case study in this new programming paradigm. It is well known that for the implementation of generalized tries, nested datatypes and polymorphic recursion are needed. Implementing tries for first-order kinded datatypes places even greater demands on the type system: it requires rank-2 type signatures and second-order nested datatypes. Despite these requirements, the definition of tries is surprisingly simple, which is mostly due to the framework of polytypic programming.


1958 ◽  
Vol 23 (1) ◽  
pp. 1-6 ◽  
Author(s):  
L. Novak Gál

By an algebra is meant an ordered set Γ = 〈V,R1, …, Rn, O1, …, Om〉, where V is a class, Ri (1 ≤ i ≤, n) is a relation on nj elements of V (i.e. Ri ⊆ Vni), and Oj (1 ≤ i ≤ n) is an operation on elements of V such that Oj(x1, … xmj) ∈ V) for all x1, …, xmj ∈ V). A sentence S of the first-order functional calculus is valid in Γ, if it contains just individual variables x1, x2, …, relation variables ϱ1, …,ϱn, where ϱi,- is nj-ary (1 ≤ i ≤ n), and operation variables σ1, …, σm, where σj is mj-ary (1 ≤, j ≤ m), and S holds if the individual variables are interpreted as ranging over V, ϱi is interpreted as Ri, and σi as Oj. If {Γi}i≤α is a (finite or infinite) sequence of algebras Γi, where Γi = 〈Vi, Ri〉 and Ri, is a binary relation, then by the direct productΓ = Πi<αΓi is meant the algebra Γ = 〈V, R〉, where V consists of all (finite or infinite) sequences x = 〈x1, x2, …, xi, …〉 with Xi ∈ Vi and where R is a binary relation such that two elements x and y of V are in the relation R if and only if xi and yi- are in the relation Ri for each i < α.


1983 ◽  
Vol 48 (4) ◽  
pp. 1013-1034
Author(s):  
Piergiorgio Odifreddi

We conclude here the treatment of forcing in recursion theory begun in Part I and continued in Part II of [31]. The numbering of sections is the continuation of the numbering of the first two parts. The bibliography is independent.In Part I our language was a first-order language: the only set we considered was the (set constant for the) generic set. In Part II a second-order language was introduced, and we had to interpret the second-order variables in some way. What we did was to consider the ramified analytic hierarchy, defined by induction as:A0 = {X ⊆ ω: X is arithmetic},Aα+1 = {X ⊆ ω: X is definable (in 2nd order arithmetic) over Aα},Aλ = ⋃α<λAα (λ limit),RA = ⋃αAα.We then used (a relativized version of) the fact that (Kleene [27]). The definition of RA is obviously modeled on the definition of the constructible hierarchy introduced by Gödel [14]. For this we no longer work in a language for second-order arithmetic, but in a language for (first-order) set theory with membership as the only nonlogical relation:L0 = ⊘,Lα+1 = {X: X is (first-order) definable over Lα},Lλ = ⋃α<λLα (λ limit),L = ⋃αLα.


1960 ◽  
Vol 25 (3) ◽  
pp. 212-216 ◽  
Author(s):  
Joseph D. Rutledge

This paper presents a class of plausible definitions for validity of formulas in the infinitely-many-valued extension of the Łukasiewicz predicate calculus, and shows that all of them are equivalent. This extended system is discussed in some form in [3] and [4]; the questions discussed here are raised rather briefly in the latter.We first describe the formal framework for the validity definition. The symbols to be used are the following: the connectives + and ‐, which are the strong disjunction B of [2] and negation respectively; the predicate variables Pi for i ∈ I, where I may be taken as the integers; the existential quantifiers E(J), where J⊆I, and I may be thought of as the index set on the individual variables, which however do not appear explicitly in this formulation.


Sign in / Sign up

Export Citation Format

Share Document