Index of the Exponential Map of a Semi-Algebraic Group

1978 ◽  
Vol 100 (4) ◽  
pp. 837 ◽  
Author(s):  
Morikuni Goto
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Arunava Mandal

Abstract Let 𝐺 be a complex algebraic group defined over ℝ, which is not necessarily Zariski-connected. In this article, we study the density of the images of the power maps g → g k g\to g^{k} , k ∈ N k\in\mathbb{N} , on real points of 𝐺, i.e., G ⁢ ( R ) G(\mathbb{R}) equipped with the real topology. As a result, we extend a theorem of P. Chatterjee on surjectivity of the power map for the set of semisimple elements of G ⁢ ( R ) G(\mathbb{R}) . We also characterize surjectivity of the power map for a disconnected group G ⁢ ( R ) G(\mathbb{R}) . The results are applied in particular to describe the image of the exponential map of G ⁢ ( R ) G(\mathbb{R}) .


2020 ◽  
Author(s):  
Randolph C Grace ◽  
Nicola J. Morton ◽  
Matt Grice ◽  
Kate Stuart ◽  
Simon Kemp

Grace et al. (2018) developed an ‘artificial algebra’ task in which participants learn to make an analogue response based on a combination of non-symbolic magnitudes by feedback and without explicit instruction. Here we tested if participants could learn to add stimulus magnitudes in this task in accord with the properties of an algebraic group. Three pairs of experiments tested the group properties of commutativity (Experiments 1a-b), identity and inverse existence (Experiments 2a-b) and associativity (Experiments 3a-b), with both line length and brightness modalities. Transfer designs were used in which participants responded on trials with feedback based on sums of magnitudes and later were tested with novel stimulus configurations. In all experiments, correlations of average responses with magnitude sums were high on trials with feedback, r = .97 and .96 for Experiments 1a-b, r = .97 and .96 for Experiments 2a-b, and ranged between r = .97 and .99 for Experiment 3a and between r = .82 and .95 for Experiment 3b. Responding on transfer trials was accurate and provided strong support for commutativity, identity and inverse existence, and associativity with line length, and for commutativity and identity and inverse existence with brightness. Deviations from associativity in Experiment 3b suggested that participants were averaging rather than adding brightness magnitudes. Our results confirm that the artificial algebra task can be used to study implicit computation and suggest that representations of magnitudes may have a structure similar to an algebraic group.


Author(s):  
LUCAS FRESSE ◽  
IVAN PENKOV

AbstractLet G be one of the ind-groups GL(∞), O(∞), Sp(∞), and let P1, ..., Pℓ be an arbitrary set of ℓ splitting parabolic subgroups of G. We determine all such sets with the property that G acts with finitely many orbits on the ind-variety X1 × × Xℓ where Xi = G/Pi. In the case of a finite-dimensional classical linear algebraic group G, the analogous problem has been solved in a sequence of papers of Littelmann, Magyar–Weyman–Zelevinsky and Matsuki. An essential difference from the finite-dimensional case is that already for ℓ = 2, the condition that G acts on X1 × X2 with finitely many orbits is a rather restrictive condition on the pair P1, P2. We describe this condition explicitly. Using the description we tackle the most interesting case where ℓ = 3, and present the answer in the form of a table. For ℓ ≥ 4 there always are infinitely many G-orbits on X1 × × Xℓ.


Author(s):  
Maike Gruchot ◽  
Alastair Litterick ◽  
Gerhard Röhrle

AbstractIn this note, we unify and extend various concepts in the area of G-complete reducibility, where G is a reductive algebraic group. By results of Serre and Bate–Martin–Röhrle, the usual notion of G-complete reducibility can be re-framed as a property of an action of a group on the spherical building of the identity component of G. We show that other variations of this notion, such as relative complete reducibility and $$\sigma $$ σ -complete reducibility, can also be viewed as special cases of this building-theoretic definition, and hence a number of results from these areas are special cases of more general properties.


2020 ◽  
Vol 8 ◽  
Author(s):  
MAIKE GRUCHOT ◽  
ALASTAIR LITTERICK ◽  
GERHARD RÖHRLE

We study a relative variant of Serre’s notion of $G$ -complete reducibility for a reductive algebraic group $G$ . We let $K$ be a reductive subgroup of $G$ , and consider subgroups of $G$ that normalize the identity component $K^{\circ }$ . We show that such a subgroup is relatively $G$ -completely reducible with respect to $K$ if and only if its image in the automorphism group of $K^{\circ }$ is completely reducible. This allows us to generalize a number of fundamental results from the absolute to the relative setting. We also derive analogous results for Lie subalgebras of the Lie algebra of $G$ , as well as ‘rational’ versions over nonalgebraically closed fields.


2009 ◽  
Vol 146 (1) ◽  
pp. 21-57 ◽  
Author(s):  
Harald Grobner

AbstractLetGbe the simple algebraic group Sp(2,2), to be defined over ℚ. It is a non-quasi-split, ℚ-rank-two inner form of the split symplectic group Sp8of rank four. The cohomology of the space of automorphic forms onGhas a natural subspace, which is spanned by classes represented by residues and derivatives of cuspidal Eisenstein series. It is called Eisenstein cohomology. In this paper we give a detailed description of the Eisenstein cohomologyHqEis(G,E) ofGin the case of regular coefficientsE. It is spanned only by holomorphic Eisenstein series. For non-regular coefficientsEwe really have to detect the poles of our Eisenstein series. SinceGis not quasi-split, we are out of the scope of the so-called ‘Langlands–Shahidi method’ (cf. F. Shahidi,On certainL-functions, Amer. J. Math.103(1981), 297–355; F. Shahidi,On the Ramanujan conjecture and finiteness of poles for certainL-functions, Ann. of Math. (2)127(1988), 547–584). We apply recent results of Grbac in order to find the double poles of Eisenstein series attached to the minimal parabolicP0ofG. Having collected this information, we determine the square-integrable Eisenstein cohomology supported byP0with respect to arbitrary coefficients and prove a vanishing result. This will exemplify a general theorem we prove in this paper on the distribution of maximally residual Eisenstein cohomology classes.


2015 ◽  
Vol 07 (02) ◽  
pp. 293-307
Author(s):  
Indranil Biswas

Let G be a connected reductive complex affine algebraic group and K ⊂ G a maximal compact subgroup. Let M be a compact complex torus equipped with a flat Kähler structure and (EG, θ) a polystable Higgs G-bundle on M. Take any C∞ reduction of structure group EK ⊂ EG to the subgroup K that solves the Yang–Mills equation for (EG, θ). We prove that the principal G-bundle EG is polystable and the above reduction EK solves the Einstein–Hermitian equation for EG. We also prove that for a semistable (respectively, polystable) Higgs G-bundle (EG, θ) on a compact connected Calabi–Yau manifold, the underlying principal G-bundle EG is semistable (respectively, polystable).


2021 ◽  
Vol 60 ◽  
pp. 65-81
Author(s):  
Tihomir Valchev ◽  
◽  
Clementina Mladenova ◽  
Ivaïlo Mladenov

Here we demonstrate some of the benefits of a novel parameterization of the Lie groups $\mathrm{Sp}(2,\bbr)\cong\mathrm{SL}(2,\bbr)$. Relying on the properties of the exponential map $\mathfrak{sl}(2,\bbr)\to\mathrm{SL}(2,\bbr)$, we have found a few explicit formulas for the logarithm of the matrices in these groups.\\ Additionally, the explicit analytic description of the ellipse representing their field of values is derived and this allows a direct graphical identification of various types.


Sign in / Sign up

Export Citation Format

Share Document