Slim models of Zermelo set theory

2001 ◽  
Vol 66 (2) ◽  
pp. 487-496 ◽  
Author(s):  
A. R. D. Mathias

AbstractWorking in Z + KP, we give a new proof that the class of hereditarily finite sets cannot be proved to be a set in Zermelo set theory, extend the method to establish other failures of replacement, and exhibit a formula Φ(λ, a) such that for any sequence ⟨Aλ ∣ λ a limit ordinal⟩ where for each λ. Aλ ⊆ λ2, there is a supertransitive inner model of Zermelo containing all ordinals in which for every λAλ = {a ∣ Φ(λ, a)}.

1996 ◽  
Vol 2 (1) ◽  
pp. 94-107 ◽  
Author(s):  
Greg Hjorth

§0. Preface. There has been an expectation that the endgame of the more tenacious problems raised by the Los Angeles ‘cabal’ school of descriptive set theory in the 1970's should ultimately be played out with the use of inner model theory. Questions phrased in the language of descriptive set theory, where both the conclusions and the assumptions are couched in terms that only mention simply definable sets of reals, and which have proved resistant to purely descriptive set theoretic arguments, may at last find their solution through the connection between determinacy and large cardinals.Perhaps the most striking example was given by [24], where the core model theory was used to analyze the structure of HOD and then show that all regular cardinals below ΘL(ℝ) are measurable. John Steel's analysis also settled a number of structural questions regarding HODL(ℝ), such as GCH.Another illustration is provided by [21]. There an application of large cardinals and inner model theory is used to generalize the Harrington-Martin theorem that determinacy implies )determinacy.However, it is harder to find examples of theorems regarding the structure of the projective sets whose only known proof from determinacy assumptions uses the link between determinacy and large cardinals. We may equivalently ask whether there are second order statements of number theory that cannot be proved under PD–the axiom of projective determinacy–without appealing to the large cardinal consequences of the PD, such as the existence of certain kinds of inner models that contain given types of large cardinals.


2019 ◽  
Vol 85 (1) ◽  
pp. 338-366 ◽  
Author(s):  
JUAN P. AGUILERA ◽  
SANDRA MÜLLER

AbstractWe determine the consistency strength of determinacy for projective games of length ω2. Our main theorem is that $\Pi _{n + 1}^1 $-determinacy for games of length ω2 implies the existence of a model of set theory with ω + n Woodin cardinals. In a first step, we show that this hypothesis implies that there is a countable set of reals A such that Mn (A), the canonical inner model for n Woodin cardinals constructed over A, satisfies $$A = R$$ and the Axiom of Determinacy. Then we argue how to obtain a model with ω + n Woodin cardinal from this.We also show how the proof can be adapted to investigate the consistency strength of determinacy for games of length ω2 with payoff in $^R R\Pi _1^1 $ or with σ-projective payoff.


2016 ◽  
Vol 81 (3) ◽  
pp. 972-996 ◽  
Author(s):  
GUNTER FUCHS ◽  
RALF SCHINDLER

AbstractOne of the basic concepts of set theoretic geology is the mantle of a model of set theory V: it is the intersection of all grounds of V, that is, of all inner models M of V such that V is a set-forcing extension of M. The main theme of the present paper is to identify situations in which the mantle turns out to be a fine structural extender model. The first main result is that this is the case when the universe is constructible from a set and there is an inner model with a Woodin cardinal. The second situation like that arises if L[E] is an extender model that is iterable in V but not internally iterable, as guided by P-constructions, L[E] has no strong cardinal, and the extender sequence E is ordinal definable in L[E] and its forcing extensions by collapsing a cutpoint to ω (in an appropriate sense). The third main result concerns the Solid Core of a model of set theory. This is the union of all sets that are constructible from a set of ordinals that cannot be added by set-forcing to an inner model. The main result here is that if there is an inner model with a Woodin cardinal, then the solid core is a fine-structural extender model.


2014 ◽  
Vol 79 (4) ◽  
pp. 1247-1285 ◽  
Author(s):  
SEAN COX ◽  
MARTIN ZEMAN

AbstractIt is well known that saturation of ideals is closely related to the “antichain-catching” phenomenon from Foreman–Magidor–Shelah [10]. We consider several antichain-catching properties that are weaker than saturation, and prove:(1)If${\cal I}$is a normal ideal on$\omega _2 $which satisfiesstationary antichain catching, then there is an inner model with a Woodin cardinal;(2)For any$n \in \omega $, it is consistent relative to large cardinals that there is a normal ideal${\cal I}$on$\omega _n $which satisfiesprojective antichain catching, yet${\cal I}$is not saturated (or even strong). This provides a negative answer to Open Question number 13 from Foreman’s chapter in the Handbook of Set Theory ([7]).


2006 ◽  
Vol 71 (4) ◽  
pp. 1200-1222 ◽  
Author(s):  
D. Bellé ◽  
F. Parlamento

AbstractLet V be the cumulative set theoretic hierarchy, generated from the empty set by taking powers at successor stages and unions at limit stages and. following [2], let the primitive language of set theory be the first order language which contains binary symbols for equality and membership only. Despite the existence of ∀∀-formulae in the primitive language, with two free variables, which are satisfiable in ∀ but not by finite sets ([5]). and therefore of ∃∃∀∀ sentences of the same language, which are undecidable in ZFC without the Axiom of Infinity, truth in V for ∃*∀∀-sentences of the primitive language, is decidable ([1]). Completeness of ZF with respect to such sentences follows.


1975 ◽  
Vol 40 (2) ◽  
pp. 221-229 ◽  
Author(s):  
William C. Powell

In [5] Gödel interpreted Peano arithmetic in Heyting arithmetic. In [8, p. 153], and [7, p. 344, (iii)], Kreisel observed that Gödel's interpretation extended to second order arithmetic. In [11] (see [4, p. 92] for a correction) and [10] Myhill extended the interpretation to type theory. We will show that Gödel's negative interpretation can be extended to Zermelo-Fraenkel set theory. We consider a set theory T formulated in the minimal predicate calculus, which in the presence of the full law of excluded middle is the same as the classical theory of Zermelo and Fraenkel. Then, following Myhill, we define an inner model S in which the axioms of Zermelo-Fraenkel set theory are true.More generally we show that any class X that is (i) transitive in the negative sense, ∀x ∈ X∀y ∈ x ¬ ¬ x ∈ X, (ii) contained in the class St = {x: ∀u(¬ ¬ u ∈ x→ u ∈ x)} of stable sets, and (iii) closed in the sense that ∀x(x ⊆ X ∼ ∼ x ∈ X), is a standard model of Zermelo-Fraenkel set theory. The class S is simply the ⊆-least such class, and, hence, could be defined by S = ⋂{X: ∀x(x ⊆ ∼ ∼ X→ ∼ ∼ x ∈ X)}. However, since we can only conservatively extend T to a class theory with Δ01-comprehension, but not with Δ11-comprehension, we will give a Δ01-definition of S within T.


1972 ◽  
Vol 6 (3) ◽  
pp. 447-457 ◽  
Author(s):  
J.L. Hickman

We work in a Zermelo-Fraenkel set theory without the Axiom of Choice. In the appendix to his paper “Sur les ensembles finis”, Tarski proposed a finiteness criterion that we have called “C-finiteness”: a nonempty set is called “C-finite” if it cannot be partitioned into two blocks, each block being equivalent to the whole set. Despite the fact that this criterion can be shown to possess several features that are undesirable in a finiteness criterion, it has a fair amount of intrinsic interest. In Section 1 of this paper we look at a certain class of C-finite sets; in Section 2 we derive a few consequences from the negation of C-finiteness; and in Section 3 we show that not every C-infinite set necessarily possesses a linear ordering. Any unexplained notation is given in my paper, “Some definitions of finiteness”, Bull. Austral. Math. Soc. 5 (1971).


Author(s):  
Asaf Karagila ◽  
Philipp Schlicht

Cohen’s first model is a model of Zermelo–Fraenkel set theory in which there is a Dedekind-finite set of real numbers, and it is perhaps the most famous model where the Axiom of Choice fails. We force over this model to add a function from this Dedekind-finite set to some infinite ordinal κ . In the case that we force the function to be injective, it turns out that the resulting model is the same as adding κ Cohen reals to the ground model, and that we have just added an enumeration of the canonical Dedekind-finite set. In the case where the function is merely surjective it turns out that we do not add any reals, sets of ordinals, or collapse any Dedekind-finite sets. This motivates the question if there is any combinatorial condition on a Dedekind-finite set A which characterises when a forcing will preserve its Dedekind-finiteness or not add new sets of ordinals. We answer this question in the case of ‘Adding a Cohen subset’ by presenting a varied list of conditions each equivalent to the preservation of Dedekind-finiteness. For example, 2 A is extremally disconnected, or [ A ] < ω is Dedekind-finite.


2020 ◽  
Vol 30 (1) ◽  
pp. 447-457
Author(s):  
Michael Rathjen

Abstract While power Kripke–Platek set theory, ${\textbf{KP}}({\mathcal{P}})$, shares many properties with ordinary Kripke–Platek set theory, ${\textbf{KP}}$, in several ways it behaves quite differently from ${\textbf{KP}}$. This is perhaps most strikingly demonstrated by a result, due to Mathias, to the effect that adding the axiom of constructibility to ${\textbf{KP}}({\mathcal{P}})$ gives rise to a much stronger theory, whereas in the case of ${\textbf{KP}}$, the constructible hierarchy provides an inner model, so that ${\textbf{KP}}$ and ${\textbf{KP}}+V=L$ have the same strength. This paper will be concerned with the relationship between ${\textbf{KP}}({\mathcal{P}})$ and ${\textbf{KP}}({\mathcal{P}})$ plus the axiom of choice or even the global axiom of choice, $\textbf{AC}_{\tiny {global}}$. Since $L$ is the standard vehicle to furnish a model in which this axiom holds, the usual argument for demonstrating that the addition of ${\textbf{AC}}$ or $\textbf{AC}_{\tiny {global}}$ to ${\textbf{KP}}({\mathcal{P}})$ does not increase proof-theoretic strength does not apply in any obvious way. Among other tools, the paper uses techniques from ordinal analysis to show that ${\textbf{KP}}({\mathcal{P}})+\textbf{AC}_{\tiny {global}}$ has the same strength as ${\textbf{KP}}({\mathcal{P}})$, thereby answering a question of Mathias. Moreover, it is shown that ${\textbf{KP}}({\mathcal{P}})+\textbf{AC}_{\tiny {global}}$ is conservative over ${\textbf{KP}}({\mathcal{P}})$ for $\varPi ^1_4$ statements of analysis. The method of ordinal analysis for theories with power set was developed in an earlier paper. The technique allows one to compute witnessing information from infinitary proofs, providing bounds for the transfinite iterations of the power set operation that are provable in a theory. As the theory ${\textbf{KP}}({\mathcal{P}})+\textbf{AC}_{\tiny {global}}$ provides a very useful tool for defining models and realizability models of other theories that are hard to construct without access to a uniform selection mechanism, it is desirable to determine its exact proof-theoretic strength. This knowledge can for instance be used to determine the strength of Feferman’s operational set theory with power set operation as well as constructive Zermelo–Fraenkel set theory with the axiom of choice.


1995 ◽  
Vol 1 (1) ◽  
pp. 75-84 ◽  
Author(s):  
John R. Steel

In this paper we shall answer some questions in the set theory of L(ℝ), the universe of all sets constructible from the reals. In order to do so, we shall assume ADL(ℝ), the hypothesis that all 2-person games of perfect information on ω whose payoff set is in L(ℝ) are determined. This is by now standard practice. ZFC itself decides few questions in the set theory of L(ℝ), and for reasons we cannot discuss here, ZFC + ADL(ℝ) yields the most interesting “completion” of the ZFC-theory of L(ℝ).ADL(ℝ) implies that L(ℝ) satisfies “every wellordered set of reals is countable”, so that the axiom of choice fails in L(ℝ). Nevertheless, there is a natural inner model of L(ℝ), namely HODL(ℝ), which satisfies ZFC. (HOD is the class of all hereditarily ordinal definable sets, that is, the class of all sets x such that every member of the transitive closure of x is definable over the universe from ordinal parameters (i.e., “OD”). The superscript “L(ℝ)” indicates, here and below, that the notion in question is to be interpreted in L(R).) HODL(ℝ) is reasonably close to the full L(ℝ), in ways we shall make precise in § 1. The most important of the questions we shall answer concern HODL(ℝ): what is its first order theory, and in particular, does it satisfy GCH?These questions first drew attention in the 70's and early 80's. (See [4, p. 223]; also [12, p. 573] for variants involving finer notions of definability.)


Sign in / Sign up

Export Citation Format

Share Document