A stochastic model of fragment formation when DNA replicates

1994 ◽  
Vol 31 (2) ◽  
pp. 301-308 ◽  
Author(s):  
Richard Cowan ◽  
S. N. Chiu

The double-stranded molecule, DNA, has the unique property of replication and, because of this, it is the central molecule of life. The mechanism of replication for each single strand is intricate, involving enzymes which move along each of the single strands building a complementary copy. At the frontier of this action, the events have a strong stochastic character due to the random location on the DNA of key ‘sites' where copying commences. A model of this process is analysed. The central problem of interest is the mean length of certain ‘islands' of newly replicated DNA developed at the randomly located ‘sites'. These islands, which have been observed experimentally, are called Okazaki fragments.

1994 ◽  
Vol 31 (02) ◽  
pp. 301-308 ◽  
Author(s):  
Richard Cowan ◽  
S. N. Chiu

The double-stranded molecule, DNA, has the unique property of replication and, because of this, it is the central molecule of life. The mechanism of replication for each single strand is intricate, involving enzymes which move along each of the single strands building a complementary copy. At the frontier of this action, the events have a strong stochastic character due to the random location on the DNA of key ‘sites' where copying commences. A model of this process is analysed. The central problem of interest is the mean length of certain ‘islands' of newly replicated DNA developed at the randomly located ‘sites'. These islands, which have been observed experimentally, are called Okazaki fragments.


Filomat ◽  
2017 ◽  
Vol 31 (18) ◽  
pp. 5811-5825
Author(s):  
Xinhong Zhang

In this paper we study the global dynamics of stochastic predator-prey models with non constant mortality rate and Holling type II response. Concretely, we establish sufficient conditions for the extinction and persistence in the mean of autonomous stochastic model and obtain a critical value between them. Then by constructing appropriate Lyapunov functions, we prove that there is a nontrivial positive periodic solution to the non-autonomous stochastic model. Finally, numerical examples are introduced to illustrate the results developed.


1992 ◽  
Vol 29 (04) ◽  
pp. 759-769
Author(s):  
R. C. Griffiths

The distribution of the number of alleles in samples from r chromosomes is studied. The stochastic model used includes gene conversion within chromosomes and mutation at loci on the chromosomes. A method is described for simulating the distribution of alleles and an algorithm given for computing lower bounds for the mean number of alleles. A formula is derived for the expected number of samples from r chromosomes which contain the allele type of a locus chosen at random.


1972 ◽  
Vol 9 (1) ◽  
pp. 43-53 ◽  
Author(s):  
S. K. Srinivasan ◽  
K. M. Mehata

The stochastic model for breaking of molecular segments proposed by Bithell is analysed and some results relating to the distribution of the number of fragments are obtained by using a slightly more general model which allows multiple ruptures. The product density technique is employed to derive the mean and mean square number of segments at any time t and the number of segments with length greater than y at time of production.


2020 ◽  
Author(s):  
Tatiana Filatova ◽  
Nikola Popovic ◽  
Ramon Grima

AbstractRecent advances in fluorescence microscopy have made it possible to measure the fluctuations of nascent (actively transcribed) RNA. These closely reflect transcription kinetics, as opposed to conventional measurements of mature (cellular) RNA, whose kinetics is affected by additional processes downstream of transcription. Here, we formulate a stochastic model which describes promoter switching, initiation, elongation, premature detachment, pausing, and termination while being analytically tractable. By computational binning of the gene into smaller segments, we derive exact closed-form expressions for the mean and variance of nascent RNA fluctuations in each of these segments, as well as for the total nascent RNA on a gene. We also derive exact expressions for the first two moments of mature RNA fluctuations, and approximate distributions for total numbers of nascent and mature RNA. Our results, which are verified by stochastic simulation, uncover the explicit dependence of the statistics of both types of RNA on transcriptional parameters and potentially provide a means to estimate parameter values from experimental data.


1977 ◽  
Vol 99 (1) ◽  
pp. 26-28 ◽  
Author(s):  
C. Ihara ◽  
A. Tsurui

A stochastic model for the fatigue of metals under repeated stress or strain is proposed. Fatigue lives up to crack initiation are investigated with the aid of a recent theory on a cumulative process and the mean values are plotted versus stress amplitudes. Of interest is the fact that this curve behaves as if the endurance limit existed when the parameters are adequately taken. Except the neighborhood of the endurance limit, the coefficients of variation are also calculated approximately.


1984 ◽  
Vol 16 (1) ◽  
pp. 30-55 ◽  
Author(s):  
F. C. Klebaner

We consider a stochastic model for the development in time of a population {Zn} where the law of offspring distribution depends on the population size. We are mainly concerned with the case when the mean mk and the variance of offspring distribution stabilize as the population size k grows to ∞, The process exhibits different asymptotic behaviour according to m < l, m = 1, m> l; moreover, the rate of convergence of mk to m plays an important role. It is shown that if m < 1 or m = 1 and mn approaches 1 not slower than n–2 then the process dies out with probability 1. If mn approaches 1 from above and the rate of convergence is n–1, then Zn/n converges in distribution to a gamma distribution, moreover a.s. both on a set of non-extinction and there are no constants an, such that Zn/an converges in probability to a non-degenerate limit. If mn approaches m > 1 not slower than n–α, α > 0, and do not grow to ∞ faster than nß, β <1 then Zn/mn converges almost surely and in L2 to a non-degenerate limit. A number of general results concerning the behaviour of sums of independent random variables are also given.


2004 ◽  
Vol 61 (21) ◽  
pp. 2644-2652
Author(s):  
Brian F. Farrell ◽  
Petros J. Ioannou

Abstract Synoptic-scale eddy variance and fluxes of heat and momentum in midlatitude jets are sensitive to small changes in mean jet velocity, dissipation, and static stability. In this work the change in the jet producing the greatest increase in variance or flux is determined. Remarkably, a single jet structure change completely characterizes the sensitivity of a chosen quadratic statistical quantity to modification of the mean jet in the sense that an arbitrary change in the jet influences a chosen statistical quantity in proportion to the projection of the change on this single optimal structure. The method used extends previous work in which storm track statistics were obtained using a stochastic model of jet turbulence.


Sign in / Sign up

Export Citation Format

Share Document