A Benign Regress: [Analysis "Problem" no. 19]

Analysis ◽  
1983 ◽  
Vol 43 (3) ◽  
pp. 115
Author(s):  
John J. Haldane

Author(s):  
Paulo J. S. G. Ferreira ◽  
Armando J. Pinho ◽  
Carlos A. C. Bastos


Author(s):  
Bo Li ◽  
Xiaoting Rui ◽  
Guoping Wang ◽  
Jianshu Zhang ◽  
Qinbo Zhou

Dynamics analysis is currently a key technique to fully understand the dynamic characteristics of sophisticated mechanical systems because it is a prerequisite for dynamic design and control studies. In this study, a dynamics analysis problem for a multiple launch rocket system (MLRS) is developed. We particularly focus on the deductions of equations governing the motion of the MLRS without rockets by using a transfer matrix method for multibody systems and the motion of rockets via the Newton–Euler method. By combining the two equations, the differential equations of the MLRS are obtained. The complete process of the rockets’ ignition, movement in the barrels, airborne flight, and landing is numerically simulated via the Monte Carlo stochastic method. An experiment is implemented to validate the proposed model and the corresponding numerical results.



2014 ◽  
Vol 6 (5) ◽  
pp. 461-467 ◽  
Author(s):  
Liudas Liepa ◽  
Agnė Gervytė ◽  
Ela Jarmolajeva ◽  
Juozas Atkočiūnas

This paper focuses on a shakedown behaviour of the ideally elasto-plastic beams system under variable repeated load. The mathematical models of the analysis problems are created using numerical methods, extremum energy principles and mathematic programming. It is shown that during the shakedown process the residual displacements vary non-monotonically. By solving analysis problem, where the load locus is being progressively expanded, it is possible to determine the upper and lower bounds of residual displacements. Suggested methods are ilustrated by solving multisupported beam example problem. The results are obtained considering principle of the small displacements. Nagrinėjamas idealiai tampriai plastinės lenkiamos strypinės sistemos prisitaikomumo būvis, veikiant kartotinei kintamajai apkrovai. Analizės uždavinių matematiniai modeliai sudaromi, pasitelkus skaitinius metodus, ekstreminius energinius principus ir matematinį programavimą. Parodoma, kad prisitaikant konstrukcijai jos liekamieji poslinkiai gali kisti nemonotoniškai. Išsprendus analizės uždavinį, kuriame progresyviai plečiama apkrovos veikimo sritis, galima nustatyti viršutines ir apatines liekamųjų poslinkių kitimo ribas. Siūloma metodika iliustruota daugiaatramės sijos liekamųjų poslinkių skaičiavimo pavyzdžiu. Rezultatai gauti, esant mažų poslinkių prielaidai.



2021 ◽  
pp. 1-15
Author(s):  
Weizhong Wang ◽  
Yilin Ma ◽  
Shuli Liu

Current risk prioritization approaches for FMEA models are insufficient to cope with risk analysis problem in which the self-confidence of expert’s judgment and the deviation among risk evaluation information are considered, simultaneously. Therefore, to remedy this limitation, this paper reports an extended risk prioritization approach by integrating the MULTIMOORA approach, Z-numbers and power weighted average (PWA) operator. Firstly, the Z-numbers with triangular fuzzy numbers are applied to reflect the self-confidence and uncertainty of expert’s judgment. Next, the PWA operator for Z-numbers (Z-PWA) with similarity measure is proposed to obtain the group risk evaluation matrix by considering the influence of the deviation among risk evaluation information. Then, an extended version of MULTIMOORA method with developed entropy method is presented to calculate risk priority ranking order of each failure. Finally, the equipment failures in a certain oil and gas plant is utilized to test the extended risk prioritization approach for FMEA model. After that, the sensitivity and comparison studies are led to illustrate the availability and reliability of the proposed risk prioritization approach for FMEA based risk analysis problem.



2014 ◽  
Vol 926-930 ◽  
pp. 4004-4007
Author(s):  
Zhang Peng ◽  
Ji Liang ◽  
Shen Lei

PBL (Problem-Based Learning) method is to problem for based of a method, teaching process in the teachers boot students based on specific problem read information, and organization discussion, eventually boot students to analysis problem and settlement problem; in human anatomy teaching in the application PBL method, change has traditional teaching means, enhanced has students of learning consciousness and sense, improve has students multi cognitive and overall thinking capacity, in students of active participation in the training they of team spirit At the same time flexible application of modern information technology, improving organizational communication skills; The proper application of PBL teaching theory to teaching human anatomy to improve student interest in learning, improve teaching effectiveness, and lay a solid foundation for the future of PBL teaching other courses.



2012 ◽  
Vol 457-458 ◽  
pp. 716-722
Author(s):  
Guo Quan Liu ◽  
Simon X. Yang

This paper is concerned with the robust stability analysis problem for stochastic neural networks of neutral-type with uncertainties and time-varying delays. Novel stability criteria are proposed in terms of linear matrix inequality (LMI) by defining a Lyapunov-Krasovskii functional and using the stochastic analysis technique. Two examples are given to show the effectiveness of the obtained conditions.



Sign in / Sign up

Export Citation Format

Share Document