Measurement of Average Energy Required to Produce an Ion Pair (W Value) for Low-Energy Ions in Several Gases

1985 ◽  
Vol 101 (2) ◽  
pp. 237 ◽  
Author(s):  
R. Huber ◽  
D. Combecher ◽  
G. Burger
1967 ◽  
Vol 45 (12) ◽  
pp. 4039-4051 ◽  
Author(s):  
L. Hastings ◽  
A. van Wijngaarden

Local regions on the surface of ZnO:Zn phosphor samples were deteriorated by a large number of low-energy ions. In this manner thin films which did not luminesce under ion bombardment were prepared. The phosphor samples were then scanned across energetic ion beams with sufficient energy to traverse the thin phosphor films. By comparing the luminescent response to this ion excitation in the damaged and undamaged portions of the phosphor surface, the total average energy losses of 1H, 4He, 14N, 40Ar, and 84Kr in passing through the films were determined. It was found that the energy losses for the heavier projectiles, when compared with the energy loss of hydrogen, are appreciably smaller than the energy losses predicted by the Lindhard and Scharff theory.The deterioration depth of the phosphor under prolonged bombardment is proportional to the speed of the damaging projectiles.


1967 ◽  
Vol 45 (7) ◽  
pp. 2333-2342 ◽  
Author(s):  
L. Hastings ◽  
P. R. Ryall ◽  
A. van Wijngaarden

Local spots on the surface of ZnS:Ag phosphor samples were deteriorated by a large number (~5 × 1013 ions per cm2) of low-energy ions. In this manner thin films which did not luminesce under ion bombardment were prepared. These phosphor samples were scanned across energetic ion beams with sufficient energy to traverse the thin phosphor films. By comparing the luminescent response to this ion excitation in the damaged and undamaged portions of the phosphor surface the total average energy losses of 1H, 4He, 14N, 40Ar, and 84Kr, in passing through the films, were determined. It was found that the energy losses for the heavier projectiles, when compared with the energy loss for hydrogen, are appreciably smaller than those predicted by the Lindhard and Scharff theory.


2020 ◽  
pp. 8-12
Author(s):  
Alexandr V. Oborin ◽  
Anna Y. Villevalde ◽  
Sergey G. Trofimchuk

The results of development of the national primary standard of air kerma, air kerma rate, exposure, exposure rate and energy flux for X-rays and gamma radiation GET 8-2011 in 2019 are presented according to the recommendations of the ICRU Report No. 90 “Key Data for Ionizing-Radiation Dosimetry: Measurement Standards and Applications”. The following changes are made to the equations for the units determination with the standard: in the field of X-rays, new correction coefficients of the free-air ionization chambers are introduced and the relative standard uncertainty of the average energy to create an ion pair in air is changed; in the field of gamma radiation, the product of the average energy to create an ion pair in air and the electron stopping-power graphite to air ratio for the cavity ionization chambers is changed. More accurate values of the units reproduced by GET 8-2019 are obtained and new metrological characteristics of the standard are stated.


MRS Bulletin ◽  
1992 ◽  
Vol 17 (6) ◽  
pp. 52-57 ◽  
Author(s):  
S.T. Picraux ◽  
E. Chason ◽  
T.M. Mayer

Why are low-energy ions relevant to the surface processing of electronic materials? The answer lies in the overriding trend of miniaturization in microelectronics. The achievement of these feats in ultrasmall architecture has required surface processing capabilities that allow layer addition and removal with incredible precision. The resulting benefits of greater capacity and speed at a plummeting cost per function are near legendary.The ability of low-energy ions to enhance the precision of surface etching, cleaning, and deposition/growth processes (Figure 1) provides one basis for the interest in ion-assisted processes. Low-energy ions are used, for example, to enhance the sharpness of side walls in plasma etching and to improve step coverage by metal layers in sputter deposition. Emerging optoelectronic applications such as forming ridges for wave-guides and ultrasmooth vertical surfaces for lasers further extend piesent requirements, and low-energy ions again provide one tool to help in this area of ultraprecise materials control. Trends associated with the decreased feature size include the movement from wet chemical processing to dry processing, the continuing need for reductions in defect densities, and the drive toward reduced temperatures and times in process steps.How do the above trends focus interest on studies of low-energy ion-assisted processes? In current applications, these trends are driving the need for increased atomic-level understanding of the ion-enhancement mechanisms, for example, in reactive ion etching to minimize defect production and enhance surface chemical reactions.


2002 ◽  
Vol 99 (1) ◽  
pp. 49-51 ◽  
Author(s):  
L. H. Toburen ◽  
J. L. Shinpaugh ◽  
E. L. B. Justiniano

1991 ◽  
Vol 236 ◽  
Author(s):  
Nicole Herbots ◽  
O.C. Hellman ◽  
O. Vancauwenberghe

AbstractThree important effects of low energy direct Ion Beam Deposition (IBD) are the athermal incorporation of material into a substrate, the enhancement of atomic mobility in the subsurface, and the modification of growth kinetics it creates. All lead to a significant lowering of the temperature necessary to induce epitaxial growth and chemical reactions. The fundamental understanding and new applications of low temperature kinetics induced by low energy ions in thin film growth and surface processing of semiconductors are reviewed. It is shown that the mechanism of IBD growth can be understood and computed quantitatively using a simple model including ion induced defect generation and sputtering, elastic recombination, thermal diffusion, chemical reactivity, and desorption The energy, temperature and dose dependence of growth rate, epitaxy, and chemical reaction during IBD is found to be controlled by the net recombination rate of interstitials at the surface in the case of epitaxy and unreacted films, and by the balance between ion beam decomposition and phase formation induced by ion beam generated defects in the case of compound thin films. Recent systematic experiments on the formation of oxides and nitrides on Si, Ge/Si(100), heteroepitaxial SixGe1−x/Si(100) and GaAs(100) illustrate applications of this mechanism using IBD in the form of Ion Beam Nitridation (IBN), Ion Beam Oxidation (IBO) and Combined Ion and Molecular beam Deposition (CIMD). It is shown that these techniques enable (1) the formation of conventional phases in conditions never used before, (2) the control and creation of properties via new degrees of freedom such as ion energy and lowered substrate temperatures, and (3) the formation of new metastable heterostructures that cannot be grown by pure thermal means.


2015 ◽  
Vol 166 (1-4) ◽  
pp. 15-18 ◽  
Author(s):  
E. Schmitt ◽  
W. Friedland ◽  
P. Kundrát ◽  
M. Dingfelder ◽  
A. Ottolenghi

2021 ◽  
pp. 160978
Author(s):  
D.M. Zayachuk ◽  
Y.D. Zayachuk ◽  
M. Hunyadi ◽  
V.E. Slynko ◽  
A. Csík

1993 ◽  
Vol 140-142 ◽  
pp. 39-54
Author(s):  
Y. Tobinaga ◽  
T. Miyano ◽  
K. Fujimoto ◽  
M. Fujito ◽  
H. Fujiwara

Sign in / Sign up

Export Citation Format

Share Document