The I2C Family from the Wilt Disease Resistance Locus I2 Belongs to the Nucleotide Binding, Leucine-Rich Repeat Superfamily of Plant Resistance Genes

1997 ◽  
Vol 9 (4) ◽  
pp. 521 ◽  
Author(s):  
Naomi Ori ◽  
Yuval Eshed ◽  
Ilan Paran ◽  
Gernot Presting ◽  
Dvora Aviv ◽  
...  
Genome ◽  
1997 ◽  
Vol 40 (5) ◽  
pp. 659-665 ◽  
Author(s):  
Evans S. Lagudah ◽  
Odile Moullet ◽  
Rudi Appels

The Cre3 gene confers a high level of resistance to the root endoparasitic nematode Heterodera avenae in wheat. A DNA marker cosegregating with H. avenae resistance was used as an entry point for map-based cloning of a disease resistance gene family at the Cre3 locus. Two related gene sequences have been analysed at the Cre3 locus. One, identified as a cDNA clone, encodes a polypeptide with a nucleotide binding site (NBS) and a leucine-rich region; this member of the disease resistance gene family is expressed in roots. A second Cre3 gene sequence, cloned as genomic DNA, appears to be a pseudogene, with a frame shift caused by a deletion event. These two genes, related to members of the cytoplasmic NBS – leucine rich repeat class of plant disease resistance genes were physically mapped to the distal 0.06 fragment of the long arm of wheat chromosome 2D and cosegregated with nematode resistance.Key words: cereal cyst nematode, disease resistance genes, nucleotide-binding site, leucine-rich repeat.


Genome ◽  
1998 ◽  
Vol 41 (6) ◽  
pp. 782-788 ◽  
Author(s):  
W Spielmeyer ◽  
M Robertson ◽  
N Collins ◽  
D Leister ◽  
P Schulze-Lefert ◽  
...  

In this study, resistance gene analogs (RGAs) which were isolated from monocot crop species (wheat, barley, maize and rice) and contained conserved sequence motifs found within the nucleotide binding site - leucine rich repeat (NBS-LRR) class of resistance genes, were used to assess their distribution in the wheat genome. The RGAs showed 30-70% amino acid identity to a previously isolated monocot NBS-LRR sequence from the Cre3 locus for cereal cyst nematode (CCN) resistance in wheat. We used the RGAs as probes to identify and map loci in wheat using recombinant inbred lines of an international Triticeae mapping family. RGA loci mapped across all seven homoeologous chromosome groups of wheat. This study demonstrated that the RGA mapping approach provides potential entry points toward identifying resistance gene candidates in wheat.Key words: wheat, disease resistance genes, nucleotide binding site, leucine rich repeat, resistance gene analogs.


2010 ◽  
Vol 135 (1) ◽  
pp. 74-82 ◽  
Author(s):  
Karen R. Harris ◽  
Brian M. Schwartz ◽  
Andrew H. Paterson ◽  
Jeff A. Brady

Thirty-one partial bermudagrass (Cynodon spp.) disease-resistance gene analogs (BRGA) were cloned and sequenced from diploid, triploid, tetraploid, and hexaploid bermudagrass using degenerate primers to target the nucleotide binding site (NBS) of the NBS–leucine-rich repeat (LRR) resistance gene family. Alignment of deduced amino acid sequences revealed that the conserved motifs of the NBS are present and all sequences have non-Drosophila melanogaster Toll and mammalian interleukin-1 receptor (TIR) motifs. Using a neighbor-joining algorithm, a dendrogram was created and nine groups of deduced amino acid sequences from bermudagrass could be identified from those sequences that span the NBS. Four BRGA markers and 15 bermudagrass expressed sequence tags (ESTs) with similarity to resistance genes or resistance gene analogs were placed on a bermudagrass genetic map. Multiple BRGA and EST markers mapped on T89 linkage groups 1a and 5a and clusters were seen on T89 19 and two linkage groups previously unidentified. In addition, three primers made from BRGA groups and ESTs with similarity to NBS-LRR resistance genes amplify NBS-LRR analogs in zoysiagrass (Zoysia japonica or Z. matrella) or seashore paspalum (Paspalum vaginatum). This gives evidence of conservation of NBS-LRR analogs among the subfamilies Chloridoideae and Panicoideae. Once disease resistance genes are identified, these BRGA and EST markers may be useful in marker-assisted selection for the improvement of disease resistance in bermudagrass.


2019 ◽  
Vol 374 (1767) ◽  
pp. 20180308 ◽  
Author(s):  
Zhen Xie ◽  
Bingxiao Yan ◽  
Jianyao Shou ◽  
Jun Tang ◽  
Xin Wang ◽  
...  

Rice blast caused by Magnaporthe oryzae is the most destructive fungal disease in crops, greatly threatening rice production and food security worldwide. The identification and utilization of broad-spectrum resistance genes are considered to be the most economic and effective method to control the disease. In the past decade, many blast resistance ( R ) genes have been identified, which mainly encode nucleotide-binding leucine-rich repeat (NLR) receptor family and confer limited race-specific resistance to the fungal pathogen. Resistance genes conferring broad-spectrum blast resistance are still largely lacking. In this study, we carried out a map-based cloning of the new blast R locus Pizh in variety ZH11. A bacterial artificial chromosome (BAC) clone of 165 kb spanning the Pizh locus was sequenced and identified 9 NLR genes, among which only Pizh-1 and Pizh-2 were expressed. Genetic complementation experiments indicated that Pizh-1 but not Pizh-2 alone could confer blast resistance. Intriguingly, both mutations on Pizh-1 and Pizh-2 by CRISPR-Cas9 abolished the Pizh- mediated resistance. We also observed that Pizh-1 -mediated resistance was partially dependent on Pizh-2 . Pizh-1 and Pizh-2 form a complex of NLRs through direct interaction. This suggests that Pizh-1 may function as the executor NLR and Pizh-2 as a ‘helper’ NLR that shares functional redundancy with other NLRs. Our current study provides not only a good tool for rice disease resistance breeding but also deep insight into NLR association and function in plant immunity. This article is part of the theme issue ‘Biotic signalling sheds light on smart pest management’.


FEBS Journal ◽  
2012 ◽  
Vol 279 (13) ◽  
pp. 2431-2443 ◽  
Author(s):  
Ying Cheng ◽  
Xiaoyu Li ◽  
Haiyang Jiang ◽  
Wei Ma ◽  
Weiyun Miao ◽  
...  

2018 ◽  
Author(s):  
Sandeep R. Marla ◽  
Kevin Chu ◽  
Satya Chintamanani ◽  
Dilbag Multani ◽  
Antje Klempien ◽  
...  

ABSTRACTAdult plant resistance (APR) is an enigmatic phenomenon in which resistance genes are ineffective in protecting seedlings from disease but confer robust resistance at maturity. Maize has multiple cases in which genes confer APR to northern leaf spot, a lethal disease caused byCochliobolus carbonumrace 1 (CCR1). The first identified case of APR in maize is encoded by a hypomorphic allele,Hm1A, at thehm1locus. In contrast, wild type alleles ofhm1provide complete protection at all developmental stages and in every part of the maize plant.Hm1encodes an NADPH-dependent reductase, which inactivates HC-toxin, a key virulence effector of CCR1. Cloning and characterization ofHm1Aruled out differential transcription or translation for its APR phenotype and identified an amino acid substitution that reduced HC-toxin reductase (HCTR) activity. The possibility of a causal relationship between the weak nature ofHm1Aand its APR phenotype was confirmed by the generation of two new APR alleles ofHm1by mutagenesis. The HCTRs encoded by these new APR alleles had undergone relatively conservative missense changes that partially reduced their enzymatic activity similar to HM1A. No difference in accumulation of HCTR was observed between adult and juvenile plants, suggesting that the susceptibility of seedlings derives from a greater need for HCTR activity, not reduced accumulation of the gene product. Conditions and treatments that altered the photosynthetic output of the host had a dramatic effect on resistance imparted by the APR alleles, demonstrating a link between the energetic or metabolic status of the host and disease resistance affected by HC-toxin catabolism by the APR alleles of HCTR.AUTHOR SUMMARYAdult plant resistance (APR) is a phenomenon in which disease resistance genes are able to confer resistance at the adult stages of the plant but somehow fail to do so at the seedling stages. Despite the widespread occurrence of APR in various plant diseases, the mechanism underlying this trait remains obscure. It is not due to the differential transcription of these genes, and here we show that it is also not due to the differential translation or activity of the APR alleles of the maizehm1gene at different stages of development. Using a combination of molecular genetics, biochemistry and physiology, we present multiple lines of evidence that demonstrate that APR is a feature or symptom of weak forms of resistance. While the mature parts of the plant are metabolically robust enough to manifest resistance, seedling tissues are not, leaving them vulnerable to disease. Growth conditions that compromise the photosynthetic output of the plant further deteriorate the ability of the seedlings to protect themselves from pathogens.One sentence summaryCharacterization of adult plant resistance in the maize-CCR1 pathosystem reveals a causal link between weak resistance and APR.


Cell ◽  
1996 ◽  
Vol 84 (3) ◽  
pp. 451-459 ◽  
Author(s):  
Mark S Dixon ◽  
David A Jones ◽  
James S Keddie ◽  
Colwyn M Thomas ◽  
Kate Harrison ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document