Absolute Pitch and Event-Related Brain Potentials

1993 ◽  
Vol 10 (3) ◽  
pp. 305-316 ◽  
Author(s):  
M. Tervaniemi ◽  
K. Alho ◽  
P. Paavilainen ◽  
M. Sams ◽  
R. Näätänen

An event-related brain potential (ERP) component called mismatch negativity (MMN) is elicited by physically deviant auditory stimuli presented among repetitive, "standard," stimuli. MMN reflects a mismatch process between sensory input from the deviant stimulus and a shortduration neuronal representation developed by the standard stimulus. The MMN amplitude is known to correlate with pitch-discrimination performance. The purpose of the present study was to investigate whether the MMN is different in absolute pitch (AP) possessors and nonpossessors. ERPs were recorded from AP and non-AP groups, which were matched with regard to musical training. It was found that deviant stimuli differing from standard tones by a quartertone or a semitone elicited an MMN irrespective of whether the stimulus was located on (white key/black key) or off the Western musical scale. These results were obtained with both sinusoidal and piano tones. The MMN was larger and earlier when the stimuli were piano tones than when they were sinusoidal tones and when the standard-deviant difference amounted to a semitone rather than a quartertone. However, differences between the groups were not found in auditory information processing reflected by the MMN component of the ERP. In the light of the earlier MMN results showing a close correlation between the MMN and pitch- discrimination accuracy, it might be concluded that pitch discrimination and identification are based on different brain mechanisms. In addition, the differences in the MMN amplitude and latency between sinusoidal and piano tones might be interpreted as suggesting that sensory memory traces, as reflected by the MMN, are capable of storing information of very complex sound structures also.

2011 ◽  
Vol 36 (2) ◽  
pp. 251-266 ◽  
Author(s):  
Andrzej Rakowski ◽  
Piotr Rogowski

AbstractThis paper has two distinct parts. Section 1 includes general discussion of the phenomenon of "absolute pitch" (AP), and presentation of various concepts concerning definitions of "full", "partial" and "pseudo" AP. Sections 2-4 include presentation of the experiment concerning frequency range in which absolute pitch appears, and discussion of the experimental results. The experiment was performed with participation of 9 AP experts selected from the population of 250 music students as best scoring in the pitch-naming piano-tone screening tests. Each subject had to recognize chromas of 108 pure tones representing the chromatic musical scale of nine octaves from E0 to D#9. The series of 108 tones was presented to each subject 60 times in random order, diotically, with loudness level about 65 phon. Percentage of correct recognitions (PC) for each tone was computed. The frequency range for the existence of absolute pitch in pure tones, perceived by sensitive AP possessors stretches usually over 5 octaves from about 130.6 Hz (C3) to about 3.951 Hz (B7). However, it was noted that in a single case, the upper boundary of AP was 9.397 Hz (D9). The split-halves method was applied to estimate the reliability of the obtained results.


2021 ◽  
Vol 11 (8) ◽  
pp. 982
Author(s):  
Ashley G. Flagge ◽  
Mary Ellen Neeley ◽  
Tara M. Davis ◽  
Victoria S. Henbest

Musical training has been shown to have a positive influence on a variety of skills, including auditory-based tasks and nonmusical cognitive and executive functioning tasks; however, because previous investigations have yielded mixed results regarding the relationship between musical training and these skills, the purpose of this study was to examine and compare the auditory processing skills of children who receive focused, daily musical training with those with more limited, generalized musical training. Sixteen typically developing children (second–fourth grade) from two different schools receiving different music curricula were assessed on measures of pitch discrimination, temporal sequencing, and prosodic awareness. The results indicated significantly better scores in pitch discrimination abilities for the children receiving daily, focused musical training (School 1) compared to students attending music class only once per week, utilizing a more generalized elementary school music curriculum (School 2). The findings suggest that more in-depth and frequent musical training may be associated with better pitch discrimination abilities in children. This finding is important given that the ability to discriminate pitch has been linked to improved phonological processing skills, an important skill for developing spoken language and literacy. Future investigations are needed to determine whether the null findings for temporal sequencing and prosodic awareness can be replicated or may be different for various grades and tasks for measuring these abilities.


1993 ◽  
Vol 36 (4) ◽  
pp. 842-849 ◽  
Author(s):  
Jill L. Elfenbein ◽  
Arnold M. Small ◽  
Julia M. Davis

The purpose of this study was to determine whether the auditory perceptual abilities of children are characterized by an age-related improvement in duration discrimination. Forty children, ages 4 to 10 years, and 10 adults served as subjects. Difference limens were obtained using a 350-msec broadband noise burst as the standard stimulus in a three-interval forcedchoice paradigm. Data were characterized by significant differences between the performances of the 4-, 6-, and 8-year-olds and those of the adults. Acquisition of adult-like discrimination performance was demonstrated between the ages of 8 and 10 years.


2021 ◽  
pp. 003151252110440
Author(s):  
Ashley G. Flagge ◽  
Lucile Puranen ◽  
Madhuri S. Mulekar

Pitch discrimination ability has been of research interest due to its potential relationship to language and literacy. However, assessment protocols for pitch discrimination have varied widely. Prior studies with both children and adults have produced conflicting performance findings across different pitch discrimination research paradigms, though they have consistently shown that discrimination accuracy is based on the psychophysical assessment method applied. In the present study, we examined pitch discrimination performance among convenience samples of 19 adult women and ten female children across six different adaptive psychophysical measurement conditions. We found pitch discrimination performance in both groups to be impacted by the measurement paradigm such that, while adults exhibited significantly better discrimination thresholds than did children, the pattern of performance across the six conditions was similar for both the adults and the children.


1997 ◽  
Vol 35 (4) ◽  
pp. 191-196 ◽  
Author(s):  
B. Van Sweden ◽  
M.G. Van Erp ◽  
F. Mesotten

2018 ◽  
Author(s):  
Moshe Shay Ben-Haim ◽  
Zohar Eitan ◽  
Eran Chajut

Recent studies indicate that the ability to represent absolute pitch values in long-term memory (LTM), long believed to be the possession of a small minority of trained musicians endowed with "absolute pitch" (AP), is in fact shared to some extent by a considerable proportion of the population. The current study examined whether this newly discovered ability affects aspects of music and auditory cognition, particularly pitch learning and evaluation. Our starting points are two well established premises: (1) frequency of occurrence has an influence on the way we process stimuli; (2) in Western music, some pitches and musical keys are much more frequent than others. Based on these premises, we hypothesize that if absolute pitch values are indeed represented in LTM, pitch frequency of occurrence in music would significantly affect cognitive processes, in particular pitch learning and evaluation. Two experiments were designed to test this hypothesis in participants with no AP, most with little or no musical training. Experiment 1 demonstrated a faster response and a learning advantage for frequent pitches over infrequent pitches in an identification task. In Experiment 2 participants evaluated infrequent pitches as more pleasing than frequent pitches when presented in isolation. These results suggest that absolute pitch representation in memory may play a substantial, hitherto unacknowledged role in auditory (and specifically musical) cognition.


Author(s):  
Malte Asendorf ◽  
Moritz Kienzle ◽  
Rachel Ringe ◽  
Fida Ahmadi ◽  
Debaditya Bhowmik ◽  
...  

This paper presents Tiltification, a multi modal spirit level application for smartphones. The non-profit app was produced by students in the master project “Sonification Apps” in winter term 2020/21 at the University of Bremen. In the app, psychoacoustic sonification is used to give feedback on the device’s rotation angles in two plane dimensions, allowing users to level furniture or take perfectly horizontal photos. Tiltification supplements the market of spirit level apps with the unique feature of auditory information processing. This provides for additional benefit in comparison to a physical spirit level and for more accessibility for visu- ally and cognitively impaired people. We argue that the distribution of sonification apps through mainstream channels is a contribution to establish sonification in the market and make it better known to users outside the scientific domain. We hope that the auditory display community will support us by using and recommending the app and by providing valuable feedback on the app functionality and design, and on our communication, advertisement and distribution strategy.


2020 ◽  
pp. 030573561989343 ◽  
Author(s):  
Xiaonuo Li

This article reports the high prevalence of Absolute Pitch (AP) among students at Shanghai Conservatory of Music and explores the effects of timbre on AP judgment through a large-scale direct-test study. This study used two types of timbres (piano timbre and string timbre) to explore the correlation between the different types of timbre and note-naming accuracy. The participants included 71 undergraduate students majoring in piano and string at Shanghai Conservatory of Music, who had begun musical training at an age ⩽ 9 and focused on Western tonal music. The main results showed that the overall performance levels were very high and that the students scored 73% correct without semitone errors and 80% with semitone errors. All groups exhibited higher performance in judging pitches in piano timbre than string timbre. In addition, after listening to piano timbre, the accuracy in judging pitches in string timbre was significantly increased, and after listening to string timbre, the accuracy in judging pitches in piano timbre decreased but not significantly.


Sign in / Sign up

Export Citation Format

Share Document