Skin-Muscle Deformation Modeling under Surface Force and its Application to Relax-Massage Robot Motion

Author(s):  
Stamatis Manesis ◽  
Panagiotis Zafeirakis ◽  
Dimitrios Kalamaras
Keyword(s):  
ROBOT ◽  
2012 ◽  
Vol 34 (5) ◽  
pp. 539 ◽  
Author(s):  
Lizheng PAN ◽  
Aiguo SONG ◽  
Guozheng XU ◽  
Huijun LI ◽  
Baoguo XU

2004 ◽  
Vol 33 (2) ◽  
pp. 121-128 ◽  
Author(s):  
R. W. Longman ◽  
H. G. Bock ◽  
G. Giese
Keyword(s):  

Author(s):  
Baoyu Shi ◽  
Hongtao Wu

Path planning technology is one of the core technologies of intelligent space robot. Combining image recognition technology and artificial intelligence learning algorithm for robot path planning in unknown space environment has become one of the hot research issues. The purpose of this paper is to propose a spatial robot path planning method based on improved fuzzy control, aiming at the shortcomings of path planning in the current industrial space robot motion control process, and based on fuzzy control algorithm. This paper proposes a fuzzy obstacle avoidance method with speed feedback based on the original advantages of the fuzzy algorithm, which improves the obstacle avoidance performance of space robot under continuous obstacles. At the same time, we integrated the improved fuzzy obstacle avoidance strategy into the behavior-based control technology, making the avoidance become an independent behavioral unit. Divide the path planning into a series of relatively independent behaviors such as fuzzy obstacle avoidance, cruise, trend target, and deadlock by the behavior-based method. According to the interaction information between the space robot and the environment, each behavior acquires the dominance of the robot through the competition mechanism, making the robot complete the specific behavior at a certain moment, and finally realize the path planning. Furthermore, to improve the overall fault tolerance of the space, robot we introduced an elegant downgrade strategy, so that the robot can successfully complete the established task in the case of control command deterioration or failure of important information, avoiding the overall performance deterioration effectively. Therefore, through the simulation experiment of the virtual environment platform, MobotSim concluded that the improved algorithm has high efficiency, high security, and the planned path is more in line with the actual situation, and the method proposed in this paper can make the space robot successfully reach the target position and optimize the spatial path, it also has good robustness and effectiveness.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Masahiro Inagawa ◽  
Toshinobu Takei ◽  
Etsujiro Imanishi

AbstractMany cooking robots have been developed in response to the increasing demand for such robots. However, most existing robots must be programmed according to specific recipes to enable cooking using robotic arms, which requires considerable time and expertise. Therefore, this paper proposes a method to allow a robot to cook by analyzing recipes available on the internet, without any recipe-specific programming. The proposed method can be used to plan robot motion based on the analysis of the cooking procedure for a recipe. We developed a cooking robot to execute the proposed method and evaluated the effectiveness of this approach by analyzing 50 recipes. More than 25 recipes could be cooked using the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document